Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sergi Sabater is active.

Publication


Featured researches published by Sergi Sabater.


Aquatic Toxicology | 2010

Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms.

Marta Ricart; Helena Guasch; Mireia Alberch; Damià Barceló; Chloé Bonnineau; Anita Geiszinger; Marinel.la Farré; Josep Ferrer; Francesco Ricciardi; Anna M. Romaní; Soizic Morin; Lorenzo Proia; Lluís Sala; David Sureda; Sergi Sabater

Triclosan is a commonly used bactericide that survives several degradation steps in WWTP (wastewater treatment plants) and potentially reaches fluvial ecosystems. In Mediterranean areas, where water scarcity results in low dilution capacity, the potential environmental risk of triclosan is high. A set of experimental channels was used to examine the short-term effects of triclosan (from 0.05 to 500μgL⁻¹) on biofilm algae and bacteria. Environmentally relevant concentrations of triclosan caused an increase of bacterial mortality with a no effect concentration (NEC) of 0.21μgL⁻¹. Dead bacteria accounted for up to 85% of the total bacterial population at the highest concentration tested. The toxicity of triclosan was higher for bacteria than algae. Photosynthetic efficiency was inhibited with increasing triclosan concentrations (NEC=0.42μgL⁻¹), and non-photochemical quenching mechanisms decreased. Diatom cell viability was also affected with increasing concentrations of triclosan. Algal toxicity may be a result of indirect effects on the biofilm toxicity, but the clear and progressive reduction observed in all the algal-related endpoints suggest the existence of direct effects of the bactericide. The toxicity detected on the co-occurring non-target components of the biofilm community, the capacity of triclosan to survive through WWTP processes and the low dilution capacity that characterizes Mediterranean systems extend the relevance of triclosan toxicity beyond bacteria in aquatic habitats.


Chemosphere | 2009

Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria.

Marta Ricart; Damià Barceló; Anita Geiszinger; Helena Guasch; Miren López de Alda; Anna M. Romaní; Gemma Vidal; Marta Villagrasa; Sergi Sabater

A system of recirculating channels was used in this study to examine the long-term effects (29d) of environmentally realistic concentrations of the herbicide diuron (from 0.07 to 7 microg L(-1)) on biofilm communities. The autotrophic activity of biofilms was affected by this herbicide, as reflected by a marked decrease in the photosynthetic efficiency. Diuron exposure also increased chlorophyll-a content and reduced the biovolume of diatom taxa at low concentrations. The effects on bacteria were also remarkable. Bacterial abundance was reduced after a week of exposure to the herbicide at a range of concentrations. Effects were on the number of live bacteria and on the increase in the leucine-aminopeptidase activity. It is suggested that inputs of herbicides to the river ecosystem at low concentrations may cause a chain of effects in the biofilm, which include inhibitory effects on algae but also indirect effects on the relationships between biofilm components.


Science of The Total Environment | 2015

Managing the effects of multiple stressors on aquatic ecosystems under water scarcity. The GLOBAQUA project

Alícia Navarro-Ortega; Vicenç Acuña; Alberto Bellin; Peter Burek; Giorgio Cassiani; Redouane Choukr-Allah; Sylvain Dolédec; Arturo Elosegi; Federico Ferrari; Antoni Ginebreda; Peter Grathwohl; Colin Jones; Philippe Ker Rault; Kasper Kok; Phoebe Koundouri; Ralf Ludwig; Ralf Merz; Radmila Milačič; Isabel Muñoz; Grigory Nikulin; Claudio Paniconi; Momir Paunović; Mira Petrovic; Laia Sabater; Sergi Sabater; Nikolaos Skoulikidis; Adriaan Slob; Georg Teutsch; Nikolaos Voulvoulis; Damià Barceló

Water scarcity is a serious environmental problem in many European regions, and will likely increase in the near future as a consequence of increased abstraction and climate change. Water scarcity exacerbates the effects of multiple stressors, and thus results in decreased water quality. It impacts river ecosystems, threatens the services they provide, and it will force managers and policy-makers to change their current practices. The EU-FP7 project GLOBAQUA aims at identifying the prevalence, interaction and linkages between stressors, and to assess their effects on the chemical and ecological status of freshwater ecosystems in order to improve water management practice and policies. GLOBAQUA assembles a multidisciplinary team of 21 European plus 2 non-European scientific institutions, as well as water authorities and river basin managers. The project includes experts in hydrology, chemistry, biology, geomorphology, modelling, socio-economics, governance science, knowledge brokerage, and policy advocacy. GLOBAQUA studies six river basins (Ebro, Adige, Sava, Evrotas, Anglian and Souss Massa) affected by water scarcity, and aims to answer the following questions: how does water scarcity interact with other existing stressors in the study river basins? How will these interactions change according to the different scenarios of future global change? Which will be the foreseeable consequences for river ecosystems? How will these in turn affect the services the ecosystems provide? How should management and policies be adapted to minimise the ecological, economic and societal consequences? These questions will be approached by combining data-mining, field- and laboratory-based research, and modelling. Here, we outline the general structure of the project and the activities to be conducted within the fourteen work-packages of GLOBAQUA.


Science of The Total Environment | 2014

Assessment of the water supply:demand ratios in a Mediterranean basin under different global change scenarios and mitigation alternatives.

Laurie Boithias; Vicenç Acuña; Laura Vergoñós; Guy Ziv; Rafael Marcé; Sergi Sabater

Spatial differences in the supply and demand of ecosystem services such as water provisioning often imply that the demand for ecosystem services cannot be fulfilled at the local scale, but it can be fulfilled at larger scales (regional, continental). Differences in the supply:demand (S:D) ratio for a given service result in different values, and these differences might be assessed with monetary or non-monetary metrics. Water scarcity occurs where and when water resources are not enough to meet all the demands, and this affects equally the service of water provisioning and the ecosystem needs. In this study we assess the value of water in a Mediterranean basin under different global change (i.e. both climate and anthropogenic changes) and mitigation scenarios, with a non-monetary metric: the S:D ratio. We computed water balances across the Ebro basin (North-East Spain) with the spatially explicit InVEST model. We highlight the spatial and temporal mismatches existing across a single hydrological basin regarding water provisioning and its consumption, considering or not, the environmental demand (environmental flow). The study shows that water scarcity is commonly a local issue (sub-basin to region), but that all demands are met at the largest considered spatial scale (basin). This was not the case in the worst-case scenario (increasing demands and decreasing supply), as the S:D ratio at the basin scale was near 1, indicating that serious problems of water scarcity might occur in the near future even at the basin scale. The analysis of possible mitigation scenarios reveals that the impact of global change may be counteracted by the decrease of irrigated areas. Furthermore, the comparison between a non-monetary (S:D ratio) and a monetary (water price) valuation metrics reveals that the S:D ratio provides similar values and might be therefore used as a spatially explicit metric to valuate the ecosystem service water provisioning.


Archive | 2012

Consistency in Diatom Response to Metal-Contaminated Environments

Soizic Morin; Arielle Cordonier; Isabelle Lavoie; Adeline Arini; Saúl Blanco; Thi Thuy Duong; Elisabet Tornés; Berta Bonet; Natàlia Corcoll; Leslie Faggiano; Martin Laviale; Florence Pérès; Eloy Bécares; Michel Coste; Agnès Feurtet-Mazel; Claude Fortin; Helena Guasch; Sergi Sabater

Diatoms play a key role in the functioning of streams, and their sensitivity to many environmental factors has led to the development of numerous diatom-based indices used in water quality assessment. Although diatom-based monitoring of metal contamination is not currently included in water quality monitoring programs, the effects of metals on diatom communities have been studied in many polluted watersheds as well as in laboratory experiments, underlying their high potential for metal contamination assessment. Here, we review the response of diatoms to metal pollution from individual level (e.g. size, growth form, and morphological abnormalities) to community structure (replacement of sensitive species by tolerant ones). These potential effects are then tested using a large, multi-country database combining diatom and metal information. Metal contamination proved to be a strong driver of the community structure, and enabled for the identification of tolerant species like Cocconeis placentula var. euglypta, Eolimna minima, Fragilaria gracilis, Nitzschia sociabilis, Pinnularia parvulissima, and Surirella angusta. Among the traits tested, diatom cell size and the occurrence of diatom deformities were found to be good indicators of high metal contamination. This work provides a basis for further use of diatoms as indicators of metal pollution.


Science of The Total Environment | 2017

Non-perennial Mediterranean rivers in Europe: Status, pressures, and challenges for research and management

Nikolaos Skoulikidis; Sergi Sabater; Thibault Datry; Manuela Morais; Andrea Buffagni; Gerald Dörflinger; Stamatis Zogaris; María del Mar Sánchez-Montoya; Núria Bonada; Eleni Kalogianni; Joana Rosado; Leonidas Vardakas; Anna Maria De Girolamo; Klement Tockner

Non-perennial rivers and streams (NPRS) cover >50% of the global river network. They are particularly predominant in Mediterranean Europe as a result of dry climate conditions, climate change and land use development. Historically, both scientists and policy makers underestimated the importance of NRPS for nature and humans alike, mainly because they have been considered as systems of low ecological and economic value. During the past decades, diminishing water resources have increased the spatial and temporal extent of artificial NPRS as well as their exposure to multiple stressors, which threatening their ecological integrity, biodiversity and ecosystem services. In this paper, we provide a comprehensive overview of the structural and functional characteristics of NPRS in the European Mediterranean, and discuss gaps and problems in their management, concerning their typology, ecological assessment, legislative and policy protection, and incorporation in River Basin Management Plans. Because NPRS comprise highly unstable ecosystems, with strong and often unpredictable temporal and spatial variability - at least as far as it is possible to assess - we outline the future research needs required to better understand, manage and conserve them as highly valuable and sensitive ecosystems. Efficient collaborative activities among multidisciplinary research groups aiming to create innovative knowledge, water managers and policy makers are urgently needed in order to establish an appropriate methodological and legislative background. The incorporation of NPRS in EU-Med River Basin Management Plans in combination with the application of ecological flows is a first step towards enhancing NPRS management and conservation in order to effectively safeguard these highly valuable albeit threatened ecosystems.


Hydrobiologia | 2010

Understanding effects of global change on river ecosystems: science to support policy in a changing world

R. Jan Stevenson; Sergi Sabater

The generation of scientific knowledge to inform environmental management is crucial with current rates of global change. Although ecology and river science in particular have advanced greatly in the last 40xa0years, gaps remain between what we know and what environmental managers need to know to protect and restore aquatic resources. We argue that detailed quantitative relationships among human activities, contaminants, habitat alterations, and ecosystem services are needed to fill many of these gaps. Given that detailed research efforts cannot be conducted on all water bodies of the planet, scientists need to develop methods for transferring these global change relationships (models) from one system and region to another. Complexity in global change relationships is caused by natural variation among rivers and variation among responses to human activities. We propose resolving this complexity with a set of guiding principles intended to facilitate transfer of knowledge learned in one river or region to another. The ecology of disturbance provides the theoretical framework for predicting effects of human activities on rivers as well as management activities. Predicting river responses to human activities is challenged by the diversity of contaminants and habitat alterations associated with these activities, but predicting effects of human activities can be improved by recognizing: similarities in sets of stressors within classes of human activities; similarities in how different stressors affect rivers; and distinguishing effects of stressors having direct versus indirect regulation of ecosystem services. Geology and climate are key variables for predicting ecological response to human activities because they regulate the natural variation in river structure and function as well as the human activities and corresponding sets of stressors in watersheds. Transferring relationships among systems can be facilitated by emphasis on direct rather than indirect relationships and developing predictions of how geology and climate regulate direct relationships in global change ecology. These guiding principles for predicting effects of human activities should be tested and refined to resolve complexity and to manage ecosystem services, which will emerge as an important currency for global assessment of ecosystems.


Science of The Total Environment | 2016

Bioaccumulation and trophic magnification of pharmaceuticals and endocrine disruptors in a Mediterranean river food web

Vicenç Acuña; Damià Barceló; Belinda Huerta; Jordi-René Mor; Sara Rodriguez-Mozaz; Sergi Sabater

Increasing evidence exists that emerging pollutants such as pharmaceuticals (PhACs) and endocrine-disrupting compounds (EDCs) can be bioaccumulated by aquatic organisms. However, the relative role of trophic transfers in the acquisition of emerging pollutants by aquatic organisms remains largely unexplored. In freshwater ecosystems, wastewater treatment plants are a major source of PhACs and EDCs. Here we studied the entrance of emerging pollutants and their flow through riverine food webs in an effluent-influenced river. To this end we assembled a data set on the composition and concentrations of a broad spectrum of PhACs (25 compounds) and EDCs (12 compounds) in water, biofilm, and three aquatic macroinvertebrate taxa with different trophic positions and feeding strategies (Ancylus fluviatilis, Hydropsyche sp., Phagocata vitta). We tested for similarities in pollutant levels among these compartments, and we compared observed bioaccumulation factors (BAFs) to those predicted by a previously-developed empirical model based on octanol-water distribution coefficients (Dow). Despite a high variation in composition and levels of emerging pollutants across food web compartments, observed BAFs in Hydropsyche and Phagocata matched, on average, those already predicted. Three compounds (the anti-inflammatory drug diclofenac, the lipid regulator gemfibrozil, and the flame retardant TBEP) were detected in water, biofilm and (at least) one macroinvertebrate taxa. TBEP was the only compound present in all taxa and showed magnification across trophic levels. This suggests that prey consumption may be, in some cases, a significant exposure route. This study advances the notion that both waterborne exposure and trophic interactions need to be taken into account when assessing the potential ecological risks of emerging pollutants in aquatic ecosystems.


Science of The Total Environment | 2017

River ecosystem processes: a synthesis of approaches, criteria of use and sensitivity to environmental stressors

Daniel von Schiller; Vicenç Acuña; Ibon Aristi; Maite Arroita; Ana Basaguren; Alberto Bellin; Luz Boyero; Andrea Butturini; Antoni Ginebreda; Eleni Kalogianni; Aitor Larrañaga; Bruno Majone; Aingeru Martínez; Silvia Monroy; Isabel Muñoz; Momir Paunović; Olatz Pereda; Mira Petrovic; Jesús Pozo; Sara Rodriguez-Mozaz; Daniel Rivas; Sergi Sabater; Francesc Sabater; Nikolaos Skoulikidis; Libe Solagaistua; Leonidas Vardakas; Arturo Elosegi

River ecosystems are subject to multiple stressors that affect their structure and functioning. Ecosystem structure refers to characteristics such as channel form, water quality or the composition of biological communities, whereas ecosystem functioning refers to processes such as metabolism, organic matter decomposition or secondary production. Structure and functioning respond in contrasting and complementary ways to environmental stressors. Moreover, assessing the response of ecosystem functioning to stressors is critical to understand the effects on the ecosystem services that produce direct benefits to humans. Yet, there is more information on structural than on functional parameters, and despite the many approaches available to measure river ecosystem processes, structural approaches are more widely used, especially in management. One reason for this discrepancy is the lack of synthetic studies analyzing river ecosystem functioning in a way that is useful for both scientists and managers. Here, we present a synthesis of key river ecosystem processes, which provides a description of the main characteristics of each process, including criteria guiding their measurement as well as their respective sensitivity to stressors. We also discuss the current limitations, potential improvements and future steps that the use of functional measures in rivers needs to face.


Environmental Pollution | 2016

Nutrients versus emerging contaminants-Or a dynamic match between subsidy and stress effects on stream biofilms

Ibon Aristi; Maria Casellas; Arturo Elosegi; S. Insa; Mira Petrovic; Sergi Sabater; Vicenç Acuña

Freshwater ecosystems are threatened by multiple anthropogenic stressors, which might be differentiated into two types: those that reduce biological activity at all concentrations (toxic contaminants), and those that subsidize biological activity at low concentrations and reduce it at high concentrations (assimilable contaminants). When occurring in mixtures, these contaminants can have either antagonistic, neutral or synergistic effects; but little is known on their joint effects. We assessed the interaction effects of a mixture of assimilable and toxic contaminants on stream biofilms in a manipulative experiment using artificial streams, and following a factorial design with three nutrient levels (low, medium or high) and either presence or absence of a mixture of emerging contaminants (ciprofloxacin, erythromycin, diclofenac, methylparaben, and sulfamethoxazole). We measured biofilm biomass, basal fluorescence, gross primary production and community respiration. Our initial hypotheses were that biofilm biomass and activity would: increase with medium nutrient concentrations (subsidy effect), but decrease with high nutrient concentrations (stress effect) (i); decrease with emerging contaminants, with the minimum decrease at medium nutrient concentrations (antagonistic interaction between nutrients subsidy and stress by emerging contaminants) and the maximum decrease at high nutrient concentrations (synergistic interaction between nutrients and emerging contaminants stress) (ii). All the measured variables responded linearly to the available nutrients, with no toxic effect at high nutrient concentrations. Emerging contaminants only caused weak toxic effects in some of the measured variables, and only after 3-4 weeks of exposure. Therefore, only antagonistic interactions were observed between nutrients and emerging contaminants, as medium and high nutrient concentrations partly compensated the harmful effects of emerging contaminants during the first weeks of the experiment. Our results show that contaminants with a subsidy effect can alleviate the effects of toxic contaminants, and that long-term experiments are required to detect stress effects of emerging contaminants at environmentally relevant concentrations.

Collaboration


Dive into the Sergi Sabater's collaboration.

Top Co-Authors

Avatar

Arturo Elosegi

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vicenç Acuña

Catalan Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Damià Barceló

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antoni Ginebreda

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mira Petrovic

Catalan Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge