Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlo Viti is active.

Publication


Featured researches published by Carlo Viti.


Current Microbiology | 2003

Characterization of Cr(VI)-Resistant Bacteria Isolated from Chromium-Contaminated Soil by Tannery Activity

Carlo Viti; Alessandra Pace; Luciana Giovannetti

Bacterial strains, previously isolated from a chromium-polluted soil, were identified on the basis of Gram reaction and biochemical characteristics (Biolog system). Moreover, chromate MICs, chromate reduction capability, multiple heavy metal tolerance, and antibiotic susceptibility were tested for each isolate. All strains but one were Gram-positive and resistant to high concentrations of chromate. The most Cr(VI)-resistant isolate (22mM) was identified as Corynebacterium hoagii. All Cr(VI)-resistant strains except the isolate ChrC20 were capable of catalyzing the reduction of Cr(VI) to Cr(III), a less toxic and less water-soluble form of chromium. The only isolate Cr(VI)-sensitive, attributed to the Pseudomonas genus, also exhibited Cr(VI)-reduction. Isolates were also screened for the presence of plasmid DNA. The strains ChrC20 and ChrB20 harbored one and two plasmids of high molecular mass, respectively. This approach permitted selection of some bacterial strains, which could be used for bioremediation of Cr(VI)-polluted environments.


Plant and Soil | 2005

Bacterial communities associated with the rhizosphere of transgenic Bt 176 maize (Zea mays) and its non transgenic counterpart

Lorenzo Brusetti; P. Francia; C. Bertolini; A. Pagliuca; Sara Borin; Claudia Sorlini; Alessandro Abruzzese; Gian Attilio Sacchi; Carlo Viti; Luciana Giovannetti; Elisa Giuntini; Marco Bazzicalupo; Daniele Daffonchio

The effect of transgenic Bt 176 maize on the rhizosphere bacterial community has been studied with a polyphasic approach by comparing the rhizosphere of Bt maize cultivated in greenhouse with that of its non transgenic counterpart grown in the same conditions. In the two plants the bacterial counts of the copiotrophic, oligotrophic and sporeforming bacteria, and the community level catabolic profiling, showed no significant differences; differences between the rhizosphere and bulk soil bacterial communities were evidenced. Automated ribosomal intergenic spacer analysis (ARISA) showed differences also in the rhizosphere communities at different plant ages, as well as between the two plant types. ARISA fingerprinting patterns of soil bacterial communities exposed to root growth solutions, collected from transgenic and non transgenic plants grown in hydroponic conditions, were grouped separately by principal component analysis suggesting that root exudates could determine the selection of different bacterial communities.


PLOS ONE | 2012

A Functional Genomics Approach to Establish the Complement of Carbohydrate Transporters in Streptococcus pneumoniae

Alessandro Bidossi; Laura Mulas; Francesca Decorosi; Leonarda Colomba; Susanna Ricci; Gianni Pozzi; Josef Deutscher; Carlo Viti; Marco R. Oggioni

The aerotolerant anaerobe Streptococcus pneumoniae is part of the normal nasopharyngeal microbiota of humans and one of the most important invasive pathogens. A genomic survey allowed establishing the occurrence of twenty-one phosphotransferase systems, seven carbohydrate uptake ABC transporters, one sodium∶solute symporter and a permease, underlining an exceptionally high capacity for uptake of carbohydrate substrates. Despite high genomic variability, combined phenotypic and genomic analysis of twenty sequenced strains did assign the substrate specificity only to two uptake systems. Systematic analysis of mutants for most carbohydrate transporters enabled us to assign a phenotype and substrate specificity to twenty-three transport systems. For five putative transporters for galactose, pentoses, ribonucleosides and sulphated glycans activity was inferred, but not experimentally confirmed and only one transport system remains with an unknown substrate and lack of any functional annotation. Using a metabolic approach, 80% of the thirty-two fermentable carbon substrates were assigned to the corresponding transporter. The complexity and robustness of sugar uptake is underlined by the finding that many transporters have multiple substrates, and many sugars are transported by more than one system. The present work permits to draw a functional map of the complete arsenal of carbohydrate utilisation proteins of pneumococci, allows re-annotation of genomic data and might serve as a reference for related species. These data provide tools for specific investigation of the roles of the different carbon substrates on pneumococcal physiology in the host during carriage and invasive infection.


Applied and Environmental Microbiology | 2009

Metabolomic Investigation of the Bacterial Response to a Metal Challenge

Valentina Tremaroli; Matthew L. Workentine; Aalim M. Weljie; Hans J. Vogel; Howard Ceri; Carlo Viti; Enrico Tatti; Ping Zhang; Alexander P. Hynes; Raymond J. Turner; Davide Zannoni

ABSTRACT Pseudomonas pseudoalcaligenes KF707 is naturally resistant to the toxic metalloid tellurite, but the mechanisms of resistance are not known. In this study we report the isolation of a KF707 mutant (T5) with hyperresistance to tellurite. In order to characterize the bacterial response and the pathways leading to tolerance, we utilized Phenotype MicroArray technology (Biolog) and a metabolomic technique based on nuclear magnetic resonance spectroscopy. The physiological states of KF707 wild-type and T5 cells exposed to tellurite were also compared in terms of viability and reduced thiol content. Our analyses showed an extensive change in metabolism upon the addition of tellurite to KF707 cultures as well as different responses when the wild-type and T5 strains were compared. Even in the absence of tellurite, T5 cells displayed a “poised” physiological status, primed for tellurite exposure and characterized by altered intracellular levels of glutathione, branched-chain amino acids, and betaine, along with increased resistance to other toxic metals and metabolic inhibitors. We conclude that hyperresistance to tellurite in P. pseudoalcaligenes KF707 is correlated with the induction of the oxidative stress response, resistance to membrane perturbation, and reconfiguration of cellular metabolism.


PLOS ONE | 2011

Deciphering the role of RND efflux transporters in Burkholderia cenocepacia

Silvia Bazzini; Claudia Udine; Andrea Sass; Maria Rosalia Pasca; Francesca Longo; Giovanni Emiliani; Marco Fondi; Elena Perrin; Francesca Decorosi; Carlo Viti; Luciana Giovannetti; Livia Leoni; Renato Fani; Giovanna Riccardi; Eshwar Mahenthiralingam; Silvia Buroni

Burkholderia cenocepacia J2315 is representative of a highly problematic group of cystic fibrosis (CF) pathogens. Eradication of B. cenocepacia is very difficult with the antimicrobial therapy being ineffective due to its high resistance to clinically relevant antimicrobial agents and disinfectants. RND (Resistance-Nodulation-Cell Division) efflux pumps are known to be among the mediators of multidrug resistance in Gram-negative bacteria. Since the significance of the 16 RND efflux systems present in B. cenocepacia (named RND-1 to -16) has been only partially determined, the aim of this work was to analyze mutants of B. cenocepacia strain J2315 impaired in RND-4 and RND-9 efflux systems, and assess their role in the efflux of toxic compounds. The transcriptomes of mutants deleted individually in RND-4 and RND-9 (named D4 and D9), and a double-mutant in both efflux pumps (named D4-D9), were compared to that of the wild-type B. cenocepacia using microarray analysis. Microarray data were confirmed by qRT-PCR, phenotypic experiments, and by Phenotype MicroArray analysis. The data revealed that RND-4 made a significant contribution to the antibiotic resistance of B. cenocepacia, whereas RND-9 was only marginally involved in this process. Moreover, the double mutant D4-D9 showed a phenotype and an expression profile similar to D4. The microarray data showed that motility and chemotaxis-related genes appeared to be up-regulated in both D4 and D4–D9 strains. In contrast, these gene sets were down-regulated or expressed at levels similar to J2315 in the D9 mutant. Biofilm production was enhanced in all mutants. Overall, these results indicate that in B. cenocepacia RND pumps play a wider role than just in drug resistance, influencing additional phenotypic traits important for pathogenesis.


Journal of Applied Microbiology | 2008

Selectivity in the heavy metal removal by exopolysaccharide‐producing cyanobacteria

Ernesto Micheletti; Giovanni Colica; Carlo Viti; Paula Tamagnini; R. De Philippis

Aims:  The aim of this study was to assess the selective removal of Cu(II), Cr(III) and Ni(II) by strains of exopolysaccharide (EPS)‐producing cyanobacteria, and to investigate the interaction of sorption in solutions with multiple‐metals.


Antimicrobial Agents and Chemotherapy | 2013

Evaluation of reduced susceptibility to quaternary ammonium compounds and bisbiguanides in clinical isolates and laboratory-generated mutants of Staphylococcus aureus

Leonardo Furi; Maria Laura Ciusa; Daniel R. Knight; Valeria Di Lorenzo; Nadia Tocci; Daniela Cirasola; Lluis Aragones; Joana Rosado Coelho; Ana T. Freitas; Emmanuela Marchi; Laura Moce; Pilar Visa; John Blackman Northwood; Carlo Viti; Elisa Borghi; Graziella Orefici; Ian Morrissey; Marco R. Oggioni

ABSTRACT The MICs and minimum bactericidal concentrations (MBCs) for the biocides benzalkonium chloride and chlorhexidine were determined against 1,602 clinical isolates of Staphylococcus aureus. Both compounds showed unimodal MIC and MBC distributions (2 and 4 or 8 mg/liter, respectively) with no apparent subpopulation with reduced susceptibility. To investigate further, all isolates were screened for qac genes, and 39 of these also had the promoter region of the NorA multidrug-resistant (MDR) efflux pump sequenced. The presence of qacA, qacB, qacC, and qacG genes increased the mode MIC, but not MBC, to benzalkonium chloride, while only qacA and qacB increased the chlorhexidine mode MIC. Isolates with a wild-type norA promoter or mutations in the norA promoter had similar biocide MIC distributions; notably, not all clinical isolates with norA mutations were resistant to fluoroquinolones. In vitro efflux mutants could be readily selected with ethidium bromide and acriflavine. Multiple passages were necessary to select mutants with biocides, but these mutants showed phenotypes comparable to those of mutants selected by dyes. All mutants showed changes in the promoter region of norA, but these were distinct from this region of the clinical isolates. Still, none of the in vitro mutants displayed fitness defects in a killing assay in Galleria mellonella larvae. In conclusion, our data provide an in-depth comparative overview on efflux in S. aureus mutants and clinical isolates, showing also that plasmid-encoded efflux pumps did not affect bactericidal activity of biocides. In addition, current in vitro tests appear not to be suitable for predicting levels of resistance that are clinically relevant.


Microbial Ecology | 2005

Comparison of 16S rRNA and 16S rDNA T-RFLP Approaches to Study Bacterial Communities in Soil Microcosms Treated with Chromate as Perturbing Agent

Alessio Mengoni; Enrico Tatti; Francesca Decorosi; Carlo Viti; Marco Bazzicalupo; Luciana Giovannetti

Transcripts of ribosomal RNA have been used for assessing the structure and dynamics of active bacterial populations; however, it remains unclear whether the information provided by community profiling derived from RNA is different from that derived from DNA, particularly when a selective pressure is applied on the bacterial community.In the present work, terminal-restriction fragment length polymorphism (T-RFLP) community profiles based on DNA and RNA extracted from soil microcosms treated with a toxic concentration of chromate were compared.Microcosms of a nonpolluted agricultural soil and of a heavy-metal-rich soil (serpentine) were treated with chromate and DNA and RNA were extracted. T-RFLP analysis was performed on amplified and retro-amplified 16SrRNA gene sequences, and band profiles obtained from samples of DNA and of RNA were compared. Some of the T-RFLP bands, identified as peculiar peaks in the profiles, were cloned and sequenced for taxonomic interpretation.Results indicated that: (1) community profiles derived from RNA and DNA were partly overlapping; (2) there was a strong correlation between the dynamics shown by RNA- and DNA-based T-RFLP profiles; (3) chromate addition exerted a clear effect on both agricultural and serpentine soil bacterial communities, either at the DNA and at the RNA level; however, the profiles derived from RNA showed sharper differences between treated and control samples than that of DNA-based profiles.


Journal of Dairy Science | 2015

Milk fatty acid composition, rumen microbial population, and animal performances in response to diets rich in linoleic acid supplemented with chestnut or quebracho tannins in dairy ewes

Arianna Buccioni; Mariano Pauselli; Carlo Viti; Sara Minieri; Grazia Pallara; Valentina Roscini; Stefano Rapaccini; M. Trabalza Marinucci; Paola Lupi; Giuseppe Conte; Marcello Mele

The aim of the study was to evaluate milk fatty acid (FA) profile, animal performance, and rumen microbial population in response to diets containing soybean oil supplemented or not with chestnut and quebracho tannins in dairy ewes. Eighteen Comisana ewes at 122±6 d in milking were allotted into 3 experimental groups. Diets were characterized by chopped grass hay administered ad libitum and by 800 g/head and day of 3 experimental concentrates containing 84.5 g of soybean oil/kg of dry matter (DM) and 52.8 g/kg of DM of bentonite (control diet), chestnut tannin extract (CHT diet), or quebracho tannin extract (QUE diet). The trial lasted 4 wk. Milk yield was recorded daily, and milk composition and blood parameters were analyzed weekly. At the end of the experiment, samples of rumen fluid were collected to analyze pH, volatile fatty acid profile, and the relative proportions of Butyrivibrio fibrisolvens and Butyrivibrio proteoclasticus in the rumen microbial population. Hepatic functionality, milk yield, and gross composition were not affected by tannin extracts, whereas milk FA composition was characterized by significant changes in the concentration of linoleic acid (CHT +2.77% and QUE +9.23%), vaccenic acid (CHT +7.07% and QUE +13.88%), rumenic acid (CHT -1.88% and QUE +24.24%), stearic acid (CHT + 8.71% and QUE -11.45%), and saturated fatty acids (CHT -0.47% and QUE -3.38%). These differences were probably due to the ability of condensed versus hydrolyzable tannins to interfere with rumen microbial metabolism, as indirectly confirmed by changes in the relative proportions of B. fibrisolvens and B. proteoclasticus populations and by changes in the molar proportions of volatile fatty acids. The effect of the CHT diet on the milk FA profile and microbial species considered in this trial was intermediate between that of QUE and the control diet, suggesting a differential effect of condensed and hydrolyzable tannins on rumen microbes. Compared with control animals, the presence of B. fibrisolvens increased about 3 times in ewes fed CHT and about 5 times in animals fed QUE. In contrast, the abundance of B. proteoclasticus decreased about 5- and 15-fold in rumen liquor of ewes fed CHT and QUE diets, respectively. The use of soybean oil and a practical dose of QUE or CHT extract in the diet of dairy ewes can be an efficient strategy to improve the nutritional quality of milk.


Journal of Applied Entomology | 2008

Relationships between the olive fly and bacteria

Patrizia Sacchetti; A. Granchietti; S. Landini; Carlo Viti; Luciana Giovannetti; Antonio Belcari

The relationship between the olive fly population and epiphytic bacteria of the olive tree was investigated by carrying out a 1‐year survey in the field. The olive fly population affected the number of bacteria present on the olive surface. Scanning electron microscope observations demonstrated that bacteria may be ingested by the fly’s mouth apparatus through the midline of the pseudotracheae. DNA amplification of the oesophageal bulb content using 16S bacteria universal primers and DNA sequencing evidenced that Candidatus Erwinia dacicola was the predominant species present. The role of bacteria in olive fly biology is discussed.

Collaboration


Dive into the Carlo Viti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge