Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emmanuela Marchi is active.

Publication


Featured researches published by Emmanuela Marchi.


Antimicrobial Agents and Chemotherapy | 2013

Evaluation of reduced susceptibility to quaternary ammonium compounds and bisbiguanides in clinical isolates and laboratory-generated mutants of Staphylococcus aureus

Leonardo Furi; Maria Laura Ciusa; Daniel R. Knight; Valeria Di Lorenzo; Nadia Tocci; Daniela Cirasola; Lluis Aragones; Joana Rosado Coelho; Ana T. Freitas; Emmanuela Marchi; Laura Moce; Pilar Visa; John Blackman Northwood; Carlo Viti; Elisa Borghi; Graziella Orefici; Ian Morrissey; Marco R. Oggioni

ABSTRACT The MICs and minimum bactericidal concentrations (MBCs) for the biocides benzalkonium chloride and chlorhexidine were determined against 1,602 clinical isolates of Staphylococcus aureus. Both compounds showed unimodal MIC and MBC distributions (2 and 4 or 8 mg/liter, respectively) with no apparent subpopulation with reduced susceptibility. To investigate further, all isolates were screened for qac genes, and 39 of these also had the promoter region of the NorA multidrug-resistant (MDR) efflux pump sequenced. The presence of qacA, qacB, qacC, and qacG genes increased the mode MIC, but not MBC, to benzalkonium chloride, while only qacA and qacB increased the chlorhexidine mode MIC. Isolates with a wild-type norA promoter or mutations in the norA promoter had similar biocide MIC distributions; notably, not all clinical isolates with norA mutations were resistant to fluoroquinolones. In vitro efflux mutants could be readily selected with ethidium bromide and acriflavine. Multiple passages were necessary to select mutants with biocides, but these mutants showed phenotypes comparable to those of mutants selected by dyes. All mutants showed changes in the promoter region of norA, but these were distinct from this region of the clinical isolates. Still, none of the in vitro mutants displayed fitness defects in a killing assay in Galleria mellonella larvae. In conclusion, our data provide an in-depth comparative overview on efflux in S. aureus mutants and clinical isolates, showing also that plasmid-encoded efflux pumps did not affect bactericidal activity of biocides. In addition, current in vitro tests appear not to be suitable for predicting levels of resistance that are clinically relevant.


Biofouling | 2012

A novel approach combining the Calgary Biofilm Device and Phenotype MicroArray for the characterization of the chemical sensitivity of bacterial biofilms

Luisa Santopolo; Emmanuela Marchi; L. Frediani; Francesca Decorosi; Carlo Viti; Luciana Giovannetti

A rapid method for screening the metabolic susceptibility of biofilms to toxic compounds was developed by combining the Calgary Biofilm Device (MBEC device) and Phenotype MicroArray (PM) technology. The method was developed using Pseudomonas alcaliphila 34, a Cr(VI)-hyper-resistant bacterium, as the test organism. P. alcaliphila produced a robust biofilm after incubation for 16 h, reaching the maximum value after incubation for 24 h (9.4 × 106 ± 3.3 × 106 CFU peg−1). In order to detect the metabolic activity of cells in the biofilm, dye E (5×) and menadione sodium bisulphate (100 μM) were selected for redox detection chemistry, because they produced a high colorimetric yield in response to bacterial metabolism (340.4 ± 6.9 Omnilog Arbitrary Units). This combined approach, which avoids the limitations of traditional plate counts, was validated by testing the susceptibility of P. alcaliphila biofilm to 22 toxic compounds. For each compound the concentration level that significantly lowered the metabolic activity of the biofilm was identified. Chemical sensitivity analysis of the planktonic culture was also performed, allowing comparison of the metabolic susceptibility patterns of biofilm and planktonic cultures.


BMC Genomics | 2016

Multiple adaptive routes of Salmonella enterica Typhimurium to biocide and antibiotic exposure

Tânia Curiao; Emmanuela Marchi; Denis Grandgirard; Ricardo León-Sampedro; Carlo Viti; Stephen L. Leib; Fernando Baquero; Marco R. Oggioni; José L. Martínez; Teresa M. Coque

BackgroundBiocides and antibiotics are used to eradicate or prevent the growth of microbial species on surfaces (occasionally on catheters), or infected sites, either in combination or sequentially, raising concerns about the development of co-resistance to both antimicrobial types. The effect of such compounds on Salmonella enterica, a major food-borne and zoonotic pathogen, has been analysed in different studies, but only few works evaluated its biological cost, and the overall effects at the genomic and transcriptomic levels associated with diverse phenotypes resulting from biocide exposure, which was the aim of this work.ResultsExposure to triclosan, clorhexidine, benzalkonium, (but not to hypochlorite) resulted in mutants with different phenotypes to a wide range of antimicrobials even unrelated to the selective agent. Most biocide-resistant mutants showed increased susceptibility to compounds acting on the cell wall (β-lactams) or the cell membranes (poly-L-lysine, polymyxin B, colistin or toxic anions). Mutations (SNPs) were found in three intergenic regions and nine genes, which have a role in energy production, amino acids, carbohydrates or lipids metabolism, some of them involved in membrane transport and pathogenicity. Comparative transcriptomics of biocide-resistant mutants showed over-expression of genes encoding efflux pumps (sugE), ribosomal and transcription-related proteins, cold-shock response (cpeE) and enzymes of microaerobic metabolism including those of the phosphotransferase system. Mainly ribosomal, metabolic and pathogenicity-related genes had affected expression in both in vitro-selected biocide mutants and field Salmonella isolates with reduced biocide susceptibility.ConclusionsMultiple pathways can be involved in the adaptation of Salmonella to biocides, mainly related with global stress, or involving metabolic and membrane alterations, and eventually causing “collateral sensitivity” to other antimicrobials. These changes might impact the bacterial-environment interaction, imposing significant bacterial fitness costs which may reduce the chances of fixation and spread of biocide resistant mutants.


Antimicrobial Agents and Chemotherapy | 2015

Polymorphic Variation in Susceptibility and Metabolism of Triclosan-Resistant Mutants of Escherichia coli and Klebsiella pneumoniae Clinical Strains Obtained after Exposure to Biocides and Antibiotics

Tânia Curiao; Emmanuela Marchi; Carlo Viti; Marco R. Oggioni; Fernando Baquero; José L. Martínez; Teresa M. Coque

ABSTRACT Exposure to biocides may result in cross-resistance to other antimicrobials. Changes in biocide and antibiotic susceptibilities, metabolism, and fitness costs were studied here in biocide-selected Escherichia coli and Klebsiella pneumoniae mutants. E. coli and K. pneumoniae mutants with various degrees of triclosan susceptibility were obtained after exposure to triclosan (TRI), benzalkonium chloride (BKC), chlorhexidine (CHX) or sodium hypochlorite (SHC), and ampicillin or ciprofloxacin. Alterations in antimicrobial susceptibility and metabolism in mutants were tested using Phenotype MicroArrays. The expression of AcrAB pump and global regulators (SoxR, MarA, and RamA) was measured by quantitative reverse transcription-PCR (qRT-PCR), and the central part of the fabI gene was sequenced. The fitness costs of resistance were assessed by a comparison of relative growth rates. Triclosan-resistant (TRIr) and triclosan-hypersusceptible (TRIhs) mutants of E. coli and K. pneumoniae were obtained after selection with biocides and/or antibiotics. E. coli TRIr mutants, including those with mutations in the fabI gene or in the expression of acrB, acrF, and marA, exhibited changes in susceptibility to TRI, CHX, and antibiotics. TRIr mutants for which the TRI MIC was high presented improved metabolism of carboxylic acids, amino acids, and carbohydrates. In TRIr mutants, resistance to one antimicrobial provoked hypersusceptibility to another one(s). TRIr mutants had fitness costs, particularly marA-overexpressing (E. coli) or ramA-overexpressing (K. pneumoniae) mutants. TRI, BKC, and CIP exposure frequently yielded TRIr mutants exhibiting alterations in AraC-like global regulators (MarA, SoxR, and RamA), AcrAB-TolC, and/or FabI, and influencing antimicrobial susceptibility, fitness, and metabolism. These various phenotypes suggest a trade-off of different selective processes shaping the evolution toward antibiotic/biocide resistance and influencing other adaptive traits.


Journal of Biological Chemistry | 2010

A Systems Biology Approach to Dissection of the Effects of Small Bicyclic Peptidomimetics on a Panel of Saccharomyces cerevisiae Mutants

Irene Stefanini; Andrea Trabocchi; Emmanuela Marchi; Antonio Guarna; Duccio Cavalieri

In recent years, an approach called “chemical genetics” has been adopted in drug research to discover and validate new targets and to identify and optimize leads by high throughput screening. In this work, we tested the ability of a library of small peptidomimetics to induce phenotypic effects with functional implications on a panel of strains of the budding yeast Saccharomyces cerevisiae, both wild type and mutants, for respiratory function and multidrug resistance. Further elucidation of the function of these peptidomimetics was assessed by testing the effects of the compound with the most prominent inhibitory activity, 089, on gene expression using DNA microarrays. Pathway analysis showed the involvement of such a molecule in inducing oxidative damage through alterations in mitochondrial functions. Transcriptional experiments were confirmed by increased levels of ROS and activation of mitochondrial membrane potential. Our results demonstrate the influence of a functional HAP1 gene in the performance of S. cerevisiae as a model system.


BMC Genomics | 2009

Filling gaps in PPAR-alpha signaling through comparative nutrigenomics analysis

Duccio Cavalieri; Enrica Calura; Chiara Romualdi; Emmanuela Marchi; Marijana Radonjic; Ben van Ommen; Michael Müller

BackgroundThe application of high-throughput genomic tools in nutrition research is a widespread practice. However, it is becoming increasingly clear that the outcome of individual expression studies is insufficient for the comprehensive understanding of such a complex field. Currently, the availability of the large amounts of expression data in public repositories has opened up new challenges on microarray data analyses. We have focused on PPARα, a ligand-activated transcription factor functioning as fatty acid sensor controlling the gene expression regulation of a large set of genes in various metabolic organs such as liver, small intestine or heart. The function of PPARα is strictly connected to the function of its target genes and, although many of these have already been identified, major elements of its physiological function remain to be uncovered. To further investigate the function of PPARα, we have applied a cross-species meta-analysis approach to integrate sixteen microarray datasets studying high fat diet and PPARα signal perturbations in different organisms.ResultsWe identified 164 genes (MDEGs) that were differentially expressed in a constant way in response to a high fat diet or to perturbations in PPARs signalling. In particular, we found five genes in yeast which were highly conserved and homologous of PPARα targets in mammals, potential candidates to be used as models for the equivalent mammalian genes. Moreover, a screening of the MDEGs for all known transcription factor binding sites and the comparison with a human genome-wide screening of Peroxisome Proliferating Response Elements (PPRE), enabled us to identify, 20 new potential candidate genes that show, both binding site, both change in expression in the condition studied. Lastly, we found a non random localization of the differentially expressed genes in the genome.ConclusionThe results presented are potentially of great interest to resume the currently available expression data, exploiting the power of in silico analysis filtered by evolutionary conservation. The analysis enabled us to indicate potential gene candidates that could fill in the gaps with regards to the signalling of PPARα and, moreover, the non-random localization of the differentially expressed genes in the genome, suggest that epigenetic mechanisms are of importance in the regulation of the transcription operated by PPARα.


Journal of the Royal Society Interface | 2014

Electrical spiking in bacterial biofilms

Elisa Masi; Marzena Ciszak; Luisa Santopolo; Arcangela Frascella; Luciana Giovannetti; Emmanuela Marchi; Carlo Viti; Stefano Mancuso

In nature, biofilms are the most common form of bacterial growth. In biofilms, bacteria display coordinated behaviour to perform specific functions. Here, we investigated electrical signalling as a possible driver in biofilm sociobiology. Using a multi-electrode array system that enables high spatio-temporal resolution, we studied the electrical activity in two biofilm-forming strains and one non-biofilm-forming strain. The action potential rates monitored during biofilm-forming bacterial growth exhibited a one-peak maximum with a long tail, corresponding to the highest biofilm development. This peak was not observed for the non-biofilm-forming strain, demonstrating that the intensity of the electrical activity was not linearly related to the bacterial density, but was instead correlated with biofilm formation. Results obtained indicate that the analysis of the spatio-temporal electrical activity of bacteria during biofilm formation can open a new frontier in the study of the emergence of collective microbial behaviour.


Microbiological Research | 2015

Novel insight into antimicrobial resistance and sensitivity phenotypes associated to qac and norA genotypes in Staphylococcus aureus

Emmanuela Marchi; Leonardo Furi; Stefania Arioli; Ian Morrissey; Valeria Di Lorenzo; Diego Mora; Luciana Giovannetti; Marco R. Oggioni; Carlo Viti

Staphylococcus aureus strains harboring QacA, QacB, QacC, QacG transporters and norA promoter up-regulating mutations were characterized by phenotype microarray (PM), standard methods for susceptibility testing, and ethidium bromide efflux assays, in order to increase knowledge on phenotypes associated to efflux pumps and their substrates. PM data and standard susceptibility testing lead to the identification of new potential efflux targets, such as guanidine hydrochloride or 8-hydroxyquinoline for QacA and QacC pumps, respectively. The identification of compounds to which the presence of efflux pumps induced increased susceptibility opens new perspectives for potential adjunct anti-resistance treatment (i.e. strains bearing QacB transporters showed increased susceptibility to thioridazine, amitriptyline and orphenadrine). Although the tested isolates were characterized by high degree of heterogeneity, a hallmark of clinical isolates, direct ethidium bromide efflux assays were effective in highlighting differences in efflux efficiency among strains. These data add to characterization of substrate specificity in the different classes of staphylococcal multidrug efflux systems conferring specific substrate profiles and efflux features to each of them.


Methods of Molecular Biology | 2015

High-throughput phenomics.

Carlo Viti; Francesca Decorosi; Emmanuela Marchi; Marco Galardini; Luciana Giovannetti

Standard protocols are available in order to apply Phenotype MicroArray (PM) technology to characterize different groups of microorganisms. Nevertheless, there is the need to pay attention to several crucial steps in order to obtain high-quality and reproducible data from PM, such as the choice of the Dye mix, the type and concentration of the carbon source in metabolic experiments, the use of a buffered medium. A systematic research of auxotrophies in strains to be tested should be carefully evaluated before starting with PM experiments. Detailed protocols to obtain defined and reproducible phenotypic profiles for bacteria and yeasts are shown. Moreover, the innovative software opm R packages and DuctApe suite for the analysis of kinetic data produced by PM and panphenome description are reported.


Mitochondrion | 2009

Novel insights into phenotype and mitochondrial proteome of yeast mutants lacking proteins Sco1p or Sco2p

Tania Gamberi; Francesca Magherini; Marina Borro; Giovanna Gentile; Duccio Cavalieri; Emmanuela Marchi; Alessandra Modesti

The yeast Saccharomyces cerevisiae is a facultative anaerobe and its mitochondrial morphology is linked to its metabolic activity. The Sco proteins (Sco1p and Sco2p) were characterized as proteins required for copper delivery to cytochrome c oxidase. Our results indicated a higher fermentative capacity of the sco1-Delta mutant in comparison to the control and the sco2-Delta mutant strains. The mitochondrial proteome analysis showed that the sco1-Delta mutant down-regulated components of the respiratory chain, the TCA cycle and transport of metabolites across the mitochondrial membrane. This evidence suggests that the absence of Sco1p causes irreversible damage to the mitochondria.

Collaboration


Dive into the Emmanuela Marchi's collaboration.

Top Co-Authors

Avatar

Carlo Viti

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge