Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos A. Santamaria is active.

Publication


Featured researches published by Carlos A. Santamaria.


PLOS ONE | 2010

Phylogeography of supralittoral rocky intertidal Ligia isopods in the pacific region from central California to central Mexico.

Luis A. Hurtado; Mariana Mateos; Carlos A. Santamaria

Background Ligia isopods are widely distributed in the Pacific rocky intertidal shores from central California to central Mexico, including the Gulf of California. Yet, their biological characteristics restrict them to complete their life cycles in a very narrow range of the rocky intertidal supralittoral. Herein, we examine phylogeographic patterns of Ligia isopods from 122 localities between central California and central Mexico. We expect to find high levels of allopatric diversity. In addition, we expect the phylogeographic patterns to show signatures of past vicariant events that occurred in this geologically dynamic region. Methodology/Principal Findings We sequenced two mitochondrial genes (Cytochrome Oxidase I and 16S ribosomal DNA). We conducted Maximum Likelihood and Bayesian phylogenetic analyses. We found many divergent clades that, in general, group according to geography. Some of the most striking features of the Ligia phylogeographic pattern include: (1) deep mid-peninsular phylogeographic breaks on the Pacific and Gulf sides of Baja peninsula; (2) within the Gulf lineages, the northern peninsula is most closely related to the northern mainland, while the southern peninsula is most closely related to the central-southern mainland; and, (3) the southernmost portion of the peninsula (Cape Region) is most closely related to the southernmost portion of mainland. Conclusions/Significance Our results shed light on the phylogenetic relationships of Ligia populations in the study area. This study probably represents the finest-scale phylogeographic examination for any organism to date in this region. Presence of highly divergent lineages suggests multiple Ligia species exist in this region. The phylogeographic patterns of Ligia in the Gulf of California and Baja peninsula are incongruent with a widely accepted vicariant scenario among phylogeographers, but consistent with aspects of alternative geological hypotheses and phylo- and biogeographic patterns of several other taxa. Our findings contribute to the ongoing debate regarding the geological origin of this important biogeographic region.


PLOS ONE | 2013

A complex evolutionary history in a remote archipelago: phylogeography and morphometrics of the Hawaiian endemic Ligia isopods.

Carlos A. Santamaria; Mariana Mateos; Stefano Taiti; Thomas J. DeWitt; Luis A. Hurtado

Compared to the striking diversification and levels of endemism observed in many terrestrial groups within the Hawaiian Archipelago, marine invertebrates exhibit remarkably lower rates of endemism and diversification. Supralittoral invertebrates restricted to specific coastal patchy habitats, however, have the potential for high levels of allopatric diversification. This is the case of Ligia isopods endemic to the Hawaiian Archipelago, which most likely arose from a rocky supralittoral ancestor that colonized the archipelago via rafting, and diversified into rocky supralittoral and inland lineages. A previous study on populations of this isopod from Oʻahu and Kauaʻi revealed high levels of allopatric differentiation, and suggested inter-island historical dispersal events have been rare. To gain a better understanding on the diversity and evolution of this group, we expanded prior phylogeographic work by incorporating populations from unsampled main Hawaiian Islands (Maui, Molokaʻi, Lanaʻi, and Hawaiʻi), increasing the number of gene markers (four mitochondrial and two nuclear genes), and conducting Maximum likelihood and Bayesian phylogenetic analyses. Our study revealed new lineages and expanded the distribution range of several lineages. The phylogeographic patterns of Ligia in the study area are complex, with Hawaiʻi, Oʻahu, and the Maui-Nui islands sharing major lineages, implying multiple inter-island historical dispersal events. In contrast, the oldest and most geographically distant of the major islands (Kauaʻi) shares no lineages with the other islands. Our results did not support the monophyly of all the supralittoral lineages (currently grouped into L. hawaiensis), or the monophyly of the terrestrial lineages (currently grouped into L. perkinsi), implying more than one evolutionary transition between coastal and inland forms. Geometric-morphometric analyses of three supralittoral clades revealed significant body shape differences among them. A taxonomic revision of Hawaiian Ligia is warranted. Our results are relevant for the protection of biodiversity found in an environment subject to high pressure from disturbances.


PLOS ONE | 2012

Molecular Systematics of the Deep-Sea Hydrothermal Vent Endemic Brachyuran Family Bythograeidae: A Comparison of Three Bayesian Species Tree Methods

Mariana Mateos; Luis A. Hurtado; Carlos A. Santamaria; Vincent Leignel; Danièle Guinot

Brachyuran crabs of the family Bythograeidae are endemic to deep-sea hydrothermal vents and represent one of the most successful groups of macroinvertebrates that have colonized this extreme environment. Occurring worldwide, the family includes six genera (Allograea, Austinograea, Bythograea, Cyanagraea, Gandalfus, and Segonzacia) and fourteen formally described species. To investigate their evolutionary relationships, we conducted Maximum Likelihood and Bayesian molecular phylogenetic analyses, based on DNA sequences from fragments of three mitochondrial genes (16S rDNA, Cytochrome oxidase I, and Cytochrome b) and three nuclear genes (28S rDNA, the sodium–potassium ATPase a-subunit ‘NaK’, and Histone H3A). We employed traditional concatenated (i.e., supermatrix) phylogenetic methods, as well as three recently developed Bayesian multilocus methods aimed at inferring species trees from potentially discordant gene trees. We found strong support for two main clades within Bythograeidae: one comprising the members of the genus Bythograea; and the other comprising the remaining genera. Relationships within each of these two clades were partially resolved. We compare our results with an earlier hypothesis on the phylogenetic relationships among bythograeid genera based on morphology. We also discuss the biogeography of the family in the light of our results. Our species tree analyses reveal differences in how each of the three methods weighs conflicting phylogenetic signal from different gene partitions and how limits on the number of outgroup taxa may affect the results.


Frontiers in Ecology and Evolution | 2014

Diversification at the narrow sea-land interface in the Caribbean: phylogeography of endemic supralittoral Ligia isopods

Carlos A. Santamaria; Mariana Mateos; Luis A. Hurtado

Phylogeographic studies have provided valuable insights into the evolutionary histories and biodiversity of different groups in the Caribbean, a region that harbors exceptional terrestrial and marine biodiversity. Herein, we examined phylogeographic patterns of the poorly dispersing supralittoral isopod Ligia sampled from 35 localities in the Caribbean Sea and adjacent areas, as well as from Veracruz (Gulf of Mexico), the type locality of L. baudiniana (the only currently recognized native Ligia species in the Caribbean). We conducted Maximum Likelihood and Bayesian phylogenetic analyses of four mitochondrial genes (Cytb, 16S rDNA, 12S rDNA and COI) and Parsimony analyses of one nuclear gene (NaK). We found a well-supported and highly divergent clade of Ligia that is distributed in the Caribbean Sea, Bahamas, southern Florida, Bermuda, and the Pacific coast of Central America and Colombia, but not in the Gulf of Mexico. A characteristic appendix masculina distinguishes this clade from other lineages of Ligia. Large divergences within this clade suggest that it constitutes a cryptic species complex. Genetically and morphologically, the specimens from the type locality of L. baudiniana were indistinguishable from the non-native species L. exotica. Some phylogeographic patterns of Ligia in the study area may be consistent with the proto-Antillean or GAARlandia vicariant hypotheses, but uncertainty concerning divergence times and aspects of the geological history precludes stronger biogeographical inferences. Passive overwater dispersal appears to have played an important role in shaping phylogeographic patterns of Ligia in the Caribbean Sea. These patterns, however, do not correspond with predicted biogeographic patterns based on population connectivity of marine organisms with larval dispersal, and do not reflect the southeast to northwest colonization pattern that has been proposed for the colonization of the Caribbean from South America by some terrestrial animals.


Ecology and Evolution | 2016

Constrained body shape among highly genetically divergent allopatric lineages of the supralittoral isopod Ligia occidentalis (Oniscidea)

Carlos A. Santamaria; Mariana Mateos; Thomas J. DeWitt; Luis A. Hurtado

Abstract Multiple highly divergent lineages have been identified within Ligia occidentalis sensu lato, a rocky supralittoral isopod distributed along a ~3000 km latitudinal gradient that encompasses several proposed marine biogeographic provinces and ecoregions in the eastern Pacific. Highly divergent lineages have nonoverlapping geographic distributions, with distributional limits that generally correspond with sharp environmental changes. Crossbreeding experiments suggest postmating reproductive barriers exist among some of them, and surveys of mitochondrial and nuclear gene markers do not show evidence of hybridization. Populations are highly isolated, some of which appear to be very small; thus, the effects of drift are expected to reduce the efficiency of selection. Large genetic divergences among lineages, marked environmental differences in their ranges, reproductive isolation, and/or high isolation of populations may have resulted in morphological differences in L. occidentalis, not detected yet by traditional taxonomy. We used landmark‐based geometric morphometric analyses to test for differences in body shape among highly divergent lineages of L. occidentalis, and among populations within these lineages. We analyzed a total of 492 individuals from 53 coastal localities from the southern California Bight to Central Mexico, including the Gulf of California. We conducted discriminant function analyses (DFAs) on body shape morphometrics to assess morphological variation among genetically differentiated lineages and their populations. We also tested for associations between phylogeny and morphological variation, and whether genetic divergence is correlated to multivariate morphological divergence. We detected significant differences in body shape among highly divergent lineages, and among populations within these lineages. Nonetheless, neither lineages nor populations can be discriminated on the basis of body shape, because correct classification rates of cross‐validated DFAs were low. Genetic distance and phylogeny had weak to no effect on body shape variation. The supralittoral environment appears to exert strong stabilizing selection and/or strong functional constraints on body shape in L. occidentalis, thereby leading to morphological stasis in this isopod.


PeerJ | 2018

Out of Asia: mitochondrial evolutionary history of the globally introduced supralittoral isopod Ligia exotica

Luis A. Hurtado; Mariana Mateos; Chang Wang; Carlos A. Santamaria; Jongwoo Jung; Valiallah Khalaji-Pirbalouty; Won Kim

The native ranges and invasion histories of many marine species remain elusive due to a dynamic dispersal process via marine vessels. Molecular markers can aid in identification of native ranges and elucidation of the introduction and establishment process. The supralittoral isopod Ligia exotica has a wide tropical and subtropical distribution, frequently found in harbors and ports around the globe. This isopod is hypothesized to have an Old World origin, from where it was unintentionally introduced to other regions via wooden ships and solid ballast. Its native range, however, remains uncertain. Recent molecular studies uncovered the presence of two highly divergent lineages of L. exotica in East Asia, and suggest this region is a source of nonindigenous populations. In this study, we conducted phylogenetic analyses (Maximum Likelihood and Bayesian) of a fragment of the mitochondrial 16S ribosomal (r)DNA gene using a dataset of this isopod that greatly expanded previous representation from Asia and putative nonindigenous populations around the world. For a subset of samples, sequences of 12S rDNA and NaK were also obtained and analyzed together with 16S rDNA. Our results show that L. exotica is comprised of several highly divergent genetic lineages, which probably represent different species. Most of the 16S rDNA genetic diversity (48 haplotypes) was detected in East and Southeast Asia. Only seven haplotypes were observed outside this region (in the Americas, Hawai’i, Africa and India), which were identical or closely related to haplotypes found in East and Southeast Asia. Phylogenetic patterns indicate the L. exotica clade originated and diversified in East and Southeast Asia, and only members of one of the divergent lineages have spread out of this region, recently, suggesting the potential to become invasive is phylogenetically constrained.


Conservation Genetics Resources | 2011

Isolation and characterization of microsatellite DNA markers in the critically endangered St. Croix ground lizard Ameiva polops

Carlos A. Santamaria; Lee A. Fitzgerald; Luis A. Hurtado

We report the development of nine polymorphic microsatellite loci for the critically endangered St. Croix ground lizard Ameiva polops. These loci will be useful to determine the genetic health of extant populations of this lizard and their levels of genetic differentiation.


Conservation Genetics Resources | 2013

Isolation and characterization of microsatellite DNA markers in the Greater Roadrunner (Geococcyx californianus)

Michael D. MacDonald; Carlos A. Santamaria; Jessica Flemming; Jeffrey Y. Honda; Luis A. Hurtado

We report the development of eight polymorphic microsatellite loci for the Greater Roadrunner (Geococcyx californianus), a terrestrial cuckoo distributed in the US Southwest and Mexico. These markers will be useful for population genetics and molecular ecology studies of this bird.


Journal of Biogeography | 2013

Phylogeography of the supralittoral isopod Ligia occidentalis around the Point Conception marine biogeographical boundary

Renate Eberl; Mariana Mateos; Richard K. Grosberg; Carlos A. Santamaria; Luis A. Hurtado


Journal of Field Ornithology | 2011

Home range dynamics, habitat selection, and survival of Greater Roadrunners

Samuel W. Kelley; Dean Ransom; Jerrod A. Butcher; Gerral G. Schulz; Brady W. Surber; William E. Pinchak; Carlos A. Santamaria; Luis A. Hurtado

Collaboration


Dive into the Carlos A. Santamaria's collaboration.

Top Co-Authors

Avatar

Dean Ransom

Texas AgriLife Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge