Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariana Mateos is active.

Publication


Featured researches published by Mariana Mateos.


Genetics | 2006

Heritable endosymbionts of Drosophila.

Mariana Mateos; Sergio Castrezana; Becky J. Nankivell; Anne M. Estes; Therese A. Markow; Nancy A. Moran

Although heritable microorganisms are increasingly recognized as widespread in insects, no systematic screens for such symbionts have been conducted in Drosophila species (the primary insect genetic models for studies of evolution, development, and innate immunity). Previous efforts screened relatively few Drosophila lineages, mainly for Wolbachia. We conducted an extensive survey of potentially heritable endosymbionts from any bacterial lineage via PCR screens of mature ovaries in 181 recently collected fly strains representing 35 species from 11 species groups. Due to our fly sampling methods, however, we are likely to have missed fly strains infected with sex ratio-distorting endosymbionts. Only Wolbachia and Spiroplasma, both widespread in insects, were confirmed as symbionts. These findings indicate that in contrast to some other insect groups, other heritable symbionts are uncommon in Drosophila species, possibly reflecting a robust innate immune response that eliminates many bacteria. A more extensive survey targeted these two symbiont types through diagnostic PCR in 1225 strains representing 225 species from 32 species groups. Of these, 19 species were infected by Wolbachia while only 3 species had Spiroplasma. Several new strains of Wolbachia and Spiroplasma were discovered, including ones divergent from any reported to date. The phylogenetic distribution of Wolbachia and Spiroplasma in Drosophila is discussed.


PLOS ONE | 2010

Spiroplasma Bacteria Enhance Survival of Drosophila hydei Attacked by the Parasitic Wasp Leptopilina heterotoma

Jialei Xie; Igor Vilchez; Mariana Mateos

Background Maternally-transmitted associations between endosymbiotic bacteria and insects are ubiquitous. While many of these associations are obligate and mutually beneficial, many are facultative, and the mechanism(s) by which these microbes persist in their host lineages remain elusive. Inherited microbes with imperfect transmission are expected to be lost from their host lineages if no other mechanisms increase their persistence (i.e., host reproductive manipulation and/or fitness benefits to host). Indeed numerous facultative heritable endosymbionts are reproductive manipulators. Nevertheless, many do not manipulate reproduction, so they are expected to confer fitness benefits to their hosts, as has been shown in several studies that report defense against natural enemies, tolerance to environmental stress, and increased fecundity. Methodology/Principal Findings We examined whether larval to adult survival of Drosophila hydei against attack by a common parasitoid wasp (Leptopilina heterotoma), differed between uninfected flies and flies that were artificially infected with Spiroplasma, a heritable endosymbiont of Drosophila hydei that does not appear to manipulate host reproduction. Survival was significantly greater for Spiroplasma-infected flies, and the effect of Spiroplasma infection was most evident during the hosts pupal stage. We examined whether or not increased survival of Spiroplasma-infected flies was due to reduced oviposition by the wasp (i.e., pre-oviposition mechanism). The number of wasp eggs per fly larva did not differ significantly between Spiroplasma-free and Spiroplasma-infected fly larvae, suggesting that differential fly survival is due to a post-oviposition mechanism. Conclusions/Significance Our results suggest that Spiroplasma confers protection to D. hydei against wasp parasitism. This is to our knowledge the first report of a potential defensive mutualism in the genus Spiroplasma. Whether it explains the persistence and high abundance of this strain in natural populations of D. hydei, as well as the widespread distribution of heritable Spiroplasma in Drosophila and other arthropods, remains to be investigated.


Evolution | 2011

EVOLUTION IN EXTREME ENVIRONMENTS: REPLICATED PHENOTYPIC DIFFERENTIATION IN LIVEBEARING FISH INHABITING SULFIDIC SPRINGS

Michael Tobler; Maura Palacios; Lauren J. Chapman; Igor Mitrofanov; David Bierbach; Martin Plath; Lenin Arias-Rodriguez; Francisco León; Mariana Mateos

We investigated replicated ecological speciation in the livebearing fish Poecilia mexicana and P. sulphuraria (Poeciliidae), which inhabit freshwater habitats and have also colonized multiple sulfidic springs in southern Mexico. These springs exhibit extreme hypoxia and high concentrations of hydrogen sulfide, which is lethal to most metazoans. We used phylogenetic analyses to test whether springs were independently colonized, performed phenotypic assessments of body and gill morphology variation to identify convergent patterns of trait differentiation, and conducted an eco‐toxicological experiment to detect differences in sulfide tolerances among ecotypes. Our results indicate that sulfidic springs were colonized by three different lineages, two within P. mexicana and one representing P. sulphuraria. Colonization occurred earlier in P. sulphuraria, whereas invasion of sulfidic springs in P. mexicana was more recent, such that each population is more closely related to neighboring populations from adjacent nonsulfidic habitats. Sulfide spring fish also show divergence from nonsulfidic phenotypes and a phenotypic convergence toward larger heads, larger gills, and increased tolerance to H2S. Together with previous studies that indicated significant reproductive isolation between fish from sulfidic and nonsulfidic habitats, this study provides evidence for repeated ecological speciation in the independent sulfide spring populations of P. mexicana and P. sulphuraria.


PLOS ONE | 2010

Phylogeography of supralittoral rocky intertidal Ligia isopods in the pacific region from central California to central Mexico.

Luis A. Hurtado; Mariana Mateos; Carlos A. Santamaria

Background Ligia isopods are widely distributed in the Pacific rocky intertidal shores from central California to central Mexico, including the Gulf of California. Yet, their biological characteristics restrict them to complete their life cycles in a very narrow range of the rocky intertidal supralittoral. Herein, we examine phylogeographic patterns of Ligia isopods from 122 localities between central California and central Mexico. We expect to find high levels of allopatric diversity. In addition, we expect the phylogeographic patterns to show signatures of past vicariant events that occurred in this geologically dynamic region. Methodology/Principal Findings We sequenced two mitochondrial genes (Cytochrome Oxidase I and 16S ribosomal DNA). We conducted Maximum Likelihood and Bayesian phylogenetic analyses. We found many divergent clades that, in general, group according to geography. Some of the most striking features of the Ligia phylogeographic pattern include: (1) deep mid-peninsular phylogeographic breaks on the Pacific and Gulf sides of Baja peninsula; (2) within the Gulf lineages, the northern peninsula is most closely related to the northern mainland, while the southern peninsula is most closely related to the central-southern mainland; and, (3) the southernmost portion of the peninsula (Cape Region) is most closely related to the southernmost portion of mainland. Conclusions/Significance Our results shed light on the phylogenetic relationships of Ligia populations in the study area. This study probably represents the finest-scale phylogeographic examination for any organism to date in this region. Presence of highly divergent lineages suggests multiple Ligia species exist in this region. The phylogeographic patterns of Ligia in the Gulf of California and Baja peninsula are incongruent with a widely accepted vicariant scenario among phylogeographers, but consistent with aspects of alternative geological hypotheses and phylo- and biogeographic patterns of several other taxa. Our findings contribute to the ongoing debate regarding the geological origin of this important biogeographic region.


Applied and Environmental Microbiology | 2003

Coupling of Bacterial Endosymbiont and Host Mitochondrial Genomes in the Hydrothermal Vent Clam Calyptogena magnifica

Luis A. Hurtado; Mariana Mateos; Richard A. Lutz; Robert C. Vrijenhoek

ABSTRACT The hydrothermal vent clam Calyptogena magnifica (Bivalvia: Vesicomyidae) depends for its nutrition on sulfur-oxidizing symbiotic bacteria housed in its gill tissues. This symbiont is transmitted vertically between generations via the clams eggs; however, it remains uncertain whether occasionally symbionts are horizontally transmitted or acquired from the environment. If symbionts are transmitted strictly vertically through the egg cytoplasm, inheritance of symbiont lineages should behave as if coupled to the hosts maternally inherited mitochondrial DNA. This coupling would be obscured, however, with low rates of horizontal or environmental transfers, the equivalent of recombination between host lineages. Population genetic analyses of C. magnifica clams and associated symbionts from eastern Pacific hydrothermal vents clearly supported the hypothesis of strictly maternal cotransmission. Host mitochondrial and symbiont DNA sequences were coupled in a clam population that was polymorphic for both genetic markers. These markers were not similarly coupled with sequence variation at a nuclear gene locus, as expected for a randomly mating sexual population. Phylogenetic analysis of the two cytoplasmic genes also revealed no evidence for recombination. The tight association between vesicomyid clams and their vertically transmitted bacterial endosymbionts is phylogenetically very young (<50 million years) and may serve as a model for the origin and evolution of eukaryotic organelles.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Ancient and continuing Darwinian selection on insulin-like growth factor II in placental fishes

Michael J. O'Neill; Betty R. Lawton; Mariana Mateos; Dawn M. Carone; Gianni C. Ferreri; Tomas Hrbek; Robert W. Meredith; David N. Reznick; Rachel J. O'Neill

Despite abundant examples of both adaptation at the level of phenotype and Darwinian selection at the level of genes, correlations between these two processes are notoriously difficult to identify. Positive Darwinian selection on genes is most easily discerned in cases of genetic conflict, when antagonistic evolutionary processes such as a Red Queen race drive the rate of nonsynonymous substitution above the neutral mutation rate. Genomic imprinting in mammals is thought to be the product of antagonistic evolution coincident with evolution of the placenta, but imprinted loci lack evidence of positive selection likely because of the ancient origin of viviparity in mammals. To determine whether genetic conflict is a general feature of adaptation to placental reproduction, we performed comparative evolutionary analyses of the insulin-like growth factor II (IGF2) gene in teleost fishes. Our analysis included several members of the order Cyprinodontiformes, in which livebearing and placentation have evolved several times independently. We found that IGF2 is subject to positive Darwinian selection coincident with the evolution of placentation in fishes, with particularly strong selection among lineages that have evolved placentation recently. Positive selection is also detected along ancient lineages of placental livebearing fishes, suggesting that selection on IGF2 function is ongoing in placental species. Our observations provide a rare example of natural selection acting in synchrony at the phenotypic and molecular level. These results also constitute the first direct evidence of parent–offspring conflict driving gene evolution.


PLOS ONE | 2013

Contrasting Phylogeography of Sandy vs. Rocky Supralittoral Isopods in the Megadiverse and Geologically Dynamic Gulf of California and Adjacent Areas

Luis A. Hurtado; Eun Jung Lee; Mariana Mateos

Phylogeographic studies of animals with low vagility and restricted to patchy habitats of the supralittoral zone, can uncover unknown diversity and shed light on processes that shaped evolution along a continent’s edge. The Pacific coast between southern California and central Mexico, including the megadiverse Gulf of California, offers a remarkable setting to study biological diversification in the supralittoral. A complex geological history coupled with cyclical fluctuations in temperature and sea level provided ample opportunities for diversification of supralittoral organisms. Indeed, a previous phylogeographic study of Ligia, a supralittoral isopod that has limited dispersal abilities and is restricted to rocky patches, revealed high levels of morphologically cryptic diversity. Herein, we examined phylogeographic patterns of Tylos, another supralittoral isopod with limited dispersal potential, but whose habitat (i.e., sandy shores) appears to be more extensive and connected than that of Ligia. We conducted Maximum Likelihood and Bayesian phylogenetic analyses on mitochondrial and nuclear DNA sequences. These analyses revealed multiple highly divergent lineages with discrete regional distributions, despite the recognition of a single valid species for this region. A traditional species-diagnostic morphological trait distinguished several of these lineages. The phylogeographic patterns of Tylos inside the Gulf of California show a deep and complex history. In contrast, patterns along the Pacific region between southern California and the Baja Peninsula indicate a recent range expansion, probably postglacial and related to changes in sea surface temperature (SST). In general, the phylogeographic patterns of Tylos differed from those of Ligia. Differences in the extension and connectivity of the habitats occupied by Tylos and Ligia may account for the different degrees of population isolation experienced by these two isopods and their contrasting phylogeographic patterns. Identification of divergent lineages of Tylos in the study area is important for conservation, as some populations are threatened by human activities.


PLOS ONE | 2013

A complex evolutionary history in a remote archipelago: phylogeography and morphometrics of the Hawaiian endemic Ligia isopods.

Carlos A. Santamaria; Mariana Mateos; Stefano Taiti; Thomas J. DeWitt; Luis A. Hurtado

Compared to the striking diversification and levels of endemism observed in many terrestrial groups within the Hawaiian Archipelago, marine invertebrates exhibit remarkably lower rates of endemism and diversification. Supralittoral invertebrates restricted to specific coastal patchy habitats, however, have the potential for high levels of allopatric diversification. This is the case of Ligia isopods endemic to the Hawaiian Archipelago, which most likely arose from a rocky supralittoral ancestor that colonized the archipelago via rafting, and diversified into rocky supralittoral and inland lineages. A previous study on populations of this isopod from Oʻahu and Kauaʻi revealed high levels of allopatric differentiation, and suggested inter-island historical dispersal events have been rare. To gain a better understanding on the diversity and evolution of this group, we expanded prior phylogeographic work by incorporating populations from unsampled main Hawaiian Islands (Maui, Molokaʻi, Lanaʻi, and Hawaiʻi), increasing the number of gene markers (four mitochondrial and two nuclear genes), and conducting Maximum likelihood and Bayesian phylogenetic analyses. Our study revealed new lineages and expanded the distribution range of several lineages. The phylogeographic patterns of Ligia in the study area are complex, with Hawaiʻi, Oʻahu, and the Maui-Nui islands sharing major lineages, implying multiple inter-island historical dispersal events. In contrast, the oldest and most geographically distant of the major islands (Kauaʻi) shares no lineages with the other islands. Our results did not support the monophyly of all the supralittoral lineages (currently grouped into L. hawaiensis), or the monophyly of the terrestrial lineages (currently grouped into L. perkinsi), implying more than one evolutionary transition between coastal and inland forms. Geometric-morphometric analyses of three supralittoral clades revealed significant body shape differences among them. A taxonomic revision of Hawaiian Ligia is warranted. Our results are relevant for the protection of biodiversity found in an environment subject to high pressure from disturbances.


PLOS ONE | 2012

Molecular Systematics of the Deep-Sea Hydrothermal Vent Endemic Brachyuran Family Bythograeidae: A Comparison of Three Bayesian Species Tree Methods

Mariana Mateos; Luis A. Hurtado; Carlos A. Santamaria; Vincent Leignel; Danièle Guinot

Brachyuran crabs of the family Bythograeidae are endemic to deep-sea hydrothermal vents and represent one of the most successful groups of macroinvertebrates that have colonized this extreme environment. Occurring worldwide, the family includes six genera (Allograea, Austinograea, Bythograea, Cyanagraea, Gandalfus, and Segonzacia) and fourteen formally described species. To investigate their evolutionary relationships, we conducted Maximum Likelihood and Bayesian molecular phylogenetic analyses, based on DNA sequences from fragments of three mitochondrial genes (16S rDNA, Cytochrome oxidase I, and Cytochrome b) and three nuclear genes (28S rDNA, the sodium–potassium ATPase a-subunit ‘NaK’, and Histone H3A). We employed traditional concatenated (i.e., supermatrix) phylogenetic methods, as well as three recently developed Bayesian multilocus methods aimed at inferring species trees from potentially discordant gene trees. We found strong support for two main clades within Bythograeidae: one comprising the members of the genus Bythograea; and the other comprising the remaining genera. Relationships within each of these two clades were partially resolved. We compare our results with an earlier hypothesis on the phylogenetic relationships among bythograeid genera based on morphology. We also discuss the biogeography of the family in the light of our results. Our species tree analyses reveal differences in how each of the three methods weighs conflicting phylogenetic signal from different gene partitions and how limits on the number of outgroup taxa may affect the results.


Ecotoxicology | 1997

Developmental stability and environmental stress in natural populations of Drosophila pachea

Luis A. Hurtado; Sergio Castrezana; Mariana Mateos; Douglas Mclaurin; Marcela Karey Tello; Jose Campoy; Therese A. Markow

We examined the relationship between developmental stress and fluctuating asymmetry in a natural population of Drosophila pachea, a cactophilic fruitfly. Cactus host variation was found to exert significant influence on the size of legs and of wings of emerging adults, but stressors associated with reduced size did not show the predicted increase in fluctuating asymmetry for either leg or wing length. These findings underscore questions raised by other investigators as to the broad utility of fluctuating asymmetry as a measure of environmental stress

Collaboration


Dive into the Mariana Mateos's collaboration.

Researchain Logo
Decentralizing Knowledge