Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos Arámburo is active.

Publication


Featured researches published by Carlos Arámburo.


Pain | 2008

PVN electrical stimulation prolongs withdrawal latencies and releases oxytocin in cerebrospinal fluid, plasma, and spinal cord tissue in intact and neuropathic rats

Guadalupe Martínez-Lorenzana; Lizbeth Espinosa-López; Martha Carranza; Carlos Arámburo; Carlos Paz-Tres; Gerardo Rojas-Piloni; Miguel Condés-Lara

Abstract We are studying an endogenous, oxytocinergic analgesia system to obtain more information about normal and pathological pain processes. In the recent years, this oxytocinergic system has been shown to be involved in normal and pathological pain suppression. The paraventricular nucleus (PVN) of the hypothalamus is an important source of brain oxytocin (OT). A descending pathway reaching the dorsal horn in the spinal cord was postulated to mediate analgesic effects at the spinal cord level. However, the oxytocin concentration during pain conditions and during PVN electrical stimulation needs to be determined. We designed experiments to measure the OT concentration in cerebrospinal fluid (CSF), plasma, and OT protein in lumbar spinal cord tissue in control and neuropathic rats. Sciatic loose ligature was used as the experimental method to produce neuropathic pain. The main findings were (1) Chronic pain experiments in animals showed that the stimulation of the anterior part of the PVN increased OT concentration and produced analgesia states, as measured by von Frey, cold, and heat plantar tests. (2) Differential effects were produced by electrical stimulation of the anterior or posterior regions of the PVN; electrical stimulation of the anterior part of the PVN enhanced the OT concentration in CSF and plasma, and it also increased OT protein concentrations in the spinal cord tissue; in contrast, the stimulation of the posterior part of the PVN only increased OT concentrations in CSF. These results suggest the participation of an endogenous analgesia system mediated by OT.


Life Sciences | 1995

angiogenic activity of anterior pituitary tissue and growth hormone on the chick embryo chorio-allantoic membrane : A novel action of GH

Janet C. Gould; Carlos Arámburo; Marie Capdevielle; Colin G. Scanes

A useful system to evaluate the angiogenic activity of hormones and growth factors is the chorioallantoic membrane (CAM) of chick embryos. The present studies examined the angiogenic activity of chicken anterior pituitary glands and both fibroblast growth factor (FGF) and growth hormone (GH). Grafts of anterior pituitary gland evoked an angiogenic response on the CAM which was lost if the adenohypophyseal tissue was first boiled. The magnitude of the angiogenic response to anterior pituitary glands increased with the age of the donor (from a minimum 15 days of embryonic development to a maximum between 2 and 6 weeks old). In view of the similarity of the profile of the angiogenic response and the reported changes in GH secretion, the angiogenic activity of GH was then examined. Considerable angiogenic responses were observed with GH; there being increases (P < 0.05) in number of new blood vessels on the CAM of chick embryos on which native chicken GH or native bovine GH or recombinant bovine GH were added. These data support GH having an angiogenic action.


Experimental Biology and Medicine | 2000

Growth Hormone Size Variants: Changes in the Pituitary During Development of the Chicken

Carlos Arámburo; Maricela Luna; Martha Carranza; Marisa Reyes; Hilda Martínez-Coria; Colin G. Scanes

There is considerable evidence for the existence of structural variants of growth hormone (GH). The chicken is a useful model for investigating GH heterogeneity as both size and charge immunoreactive-(ir) variants have been observed in the pituitary and plasma. The present study examined the size distribution of ir-GH in the pituitary gland of chicken, from late embryogenesis through adulthood. Pituitaries were homogenized in the presence of protease inhibitor, and the GH size variants were separated by SDS-PAGE, transferred by Western blotting, immunostained with a specific antiserum to chicken GH, and quantitated by chemiluminescence followed by laser densitometry (chemiluminescent assay). Under nonreducing conditions ir-GH bands of 15, 22, 25, 44, 50, 66, 80, 98, 105 and >110 kDa were observed. Both the relative proportion of the GH size variants and the total pituitary content varied with developmental stage and age. The proportion of the 15-kDa fragment was greatest in the embryonic stage, and then it decreased. The proportion of the monomeric 22-kDa form was lowest at 18 days of embryogenesis (dE) and highest at 20 dE. In contrast, the high MW forms (>/=66 kDa) were lowest in embryos, and they increased (P < 0.05) after hatching. The 22-, 44-, 66-, and 80-kDa forms were assayed for activity by radioreceptor assay following isolation by semipreparative SDS-PAGE. Only the 22-kDa GH variant showed radioreceptor activity. Under reducing conditions for SDS-PAGE, ir-GH bands of 13, 15, 18, 23, 26, 36, 39, 44, 48, 59 and 72 kDa were oberved, but most of the high MW form disappeared. There was a concomitant increase in the proportion of the monomeric band and of several submonomeric forms. The present data indicate that the expression, processing, and/or release of some if not all size variants are under some differential control during growth and development of the chicken.


General and Comparative Endocrinology | 2013

Neuro-protective effects of growth hormone (GH) after hypoxia–ischemia injury in embryonic chicken cerebellum

Clara Alba-Betancourt; José Luis Luna-Acosta; Candy Ramírez-Martínez; Daniela Ávila-González; Estefany Granados-Ávalos; Martha Carranza; Hilda Martinez-Coria; Carlos Arámburo; Maricela Luna

Neuroprotection is a mechanism within the central nervous system (CNS) that protects neurons from damage as a result of a severe insult. It is known that growth hormone (GH) is involved in cell survival and may inhibit apoptosis in several cell types, including those of the CNS. Both GH and GH-receptor (GHR) genes are expressed in the cerebellum. Thus, we investigated the possible neuroprotective role of GH in this organ, which is very sensitive to hypoxic/ischemic conditions. Endogenous GH levels increased in the brain and cerebellum (30% and 74%, respectively) of 15-day-old chicken embryos exposed to hypoxia during 24h compared to normoxia. In primary embryonic cerebellar neuron cultures treated under hypoxia (0.5% O(2)) and low glucose (1g/L) conditions (HLG) for 1h, GH levels increased 1.16-fold compared to the control. The addition of 1nM recombinant chicken GH (rcGH) to cultures during HLG increased cell viability (1.7-fold) and the expression of Bcl-2 (1.67-fold); in contrast the caspase-3 activity and the proportion of apoptotic cells decreased (37% and 54.2%, respectively) compared to HLG. rcGH activated the PI3K/Akt pathway both under normoxic and HLG conditions, increasing the proportion of phosphorylated Akt (1.7- and 1.4-fold, respectively). These effects were abolished by wortmannin and by immunoneutralization, indicating that GH acts through this signaling pathway. Furthermore, the 15-kDa GH variant (10nM) significantly increased cell viability and decreased caspase-3 activity during HLG condition. Thus GH may act as a paracrine/autocrine neuroprotective factor that preserves cellular viability and inhibits apoptotic cell death.


Endocrine | 2001

Characterization of a bioactive 15 kDa fragment produced by proteolytic cleavage of chicken growth hormone

Carlos Arámburo; Martha Carranza; Marisa Reyes; Maricela Luna; Hilda Martínez-Coria; L. Berumen; Colin G. Scanes

There is evidence for a cleaved form of GH in the chicken pituitary gland. A 25 kDa band of immunoreactive-(ir-)GH, as well as the 22 kDa monomeric form and some oligomeric forms were observed when purified GH or fresh pituitary extract were subjected to SDS-PAGE under nonreducing conditions. Under reducing conditions, the 25 kDa ir-GH was no longer observed, being replaced by a 15 kDa band, consistent with reduction of the disulfide bridges of the cleaved form. The type of protease involved was investigated using exogenous proteases and monomeric cGH. Cleaved forms of chicken GH were generated by thrombin or collagenase. The site of cleavage was found in position Arg133-Gly134 as revealed by sequencing the fragments produced. The NH2-terminal sequence of 40 amino acid residues in the 15 kDa form was identical to that of the rcGH and analysis of the remaining 7 kDa fragment showed an exact identity with positions 134–140 of cGH structure. The thrombin cleaved GH and the 15 kDa form showed reduced activity (0.8% and 0.5% of GH, respectively) in a radioreceptor assay employing a chicken liver membrane preparation. However, this fragment had a clear bioactivity in an angiogenic bioassay and was capable to inhibit the activity of deiodinase type III in the chicken liver.


General and Comparative Endocrinology | 2012

Local expression and distribution of growth hormone and growth hormone receptor in the chicken ovary: Effects of GH on steroidogenesis in cultured follicular granulosa cells

S. Marisela Ahumada-Solórzano; Martha Carranza; E. Pedernera; A.J. Rodríguez-Méndez; Maricela Luna; Carlos Arámburo

Preovulatory follicular development (PFD) is mainly regulated by gonadotropins (FSH, LH) and steroids, although other intraovarian factors are also involved. We analyzed the local expression of growth hormone (GH) in the hen ovary and the role that this hormone may play on the regulation of steroidogenesis in granulosa cells (GCs). Ovarian follicles from sexually mature hens were studied at different developmental stages. Both GH mRNA (by in situ hybridization) and protein (by immunohistochemistry) were expressed mainly in the GCs, and to a lesser extent in the theca cells of the follicular wall. Sequence of a GH cDNA 690-bp fragment obtained from the follicular wall was identical to that obtained from the pituitary. The growth hormone receptor (GHR) mRNA was also expressed in the follicles. Nine GH variants were observed by SDS-PAGE and Western blotting, but the main isoform showed a MW of 17 kDa, at all developmental stages. Addition of GH (0.1, 1, 10 nM) stimulated the synthesis of progesterone (P4) in primary GCs cultures in a dose-dependent manner (1.5, 2.9, 5.4 times, respectively). GH also stimulated the expression of cholesterol side-chain cleavage enzyme (cytochrome P450scc) mRNA, a rate-limiting enzyme during P4 synthesis (2.9, 4.6, 4.9 times, respectively), whereas the synthesis of 3β-hydroxysteroid dehydrogenase (3β-HSD) mRNA (a constitutive enzyme) was not changed. Both GH and GHR were co-expressed in GCs cultures. The locally expressed GH present in concentrated (4×, 6×, 8×) conditioned media obtained from ovarian GC cultures stimulated P4 production (1.2, 2.2, 4.4 times, respectively) in additional fresh cultured GCs, and this effect disappeared when the conditioned media were treated with antiserum against GH. These data suggest that locally produced GH may modulate follicular development through autocrine/paracrine effects in the chicken ovary.


General and Comparative Endocrinology | 1989

Partial biochemical and biological characterization of purified chicken growth hormone (cGH). Isolation of cGH charge variants and evidence that cGH is phosphorylated

Carlos Arámburo; Martha Carranza; Rocío Sánchez; Gerardo Perera

Chicken growth hormone (cGH) was purified from frozen pituitary glands obtained from recently sacrificed broilers. Glands were homogenized in a protease inhibitor solution (0.5 mM PMSF, 50 KIU/ml aprotinin, pH 7.2); extract was taken to pH 9.0 with calcium hydroxide and the supernatant was differentially precipitated with 20% (fraction A) and 50% (fraction B) ammonium sulfate. cGH (fraction B-DE-1) was obtained in pure form from fraction B after DEAE-cellulose chromatography at pH 8.6, with a yield of 2.9 mg/g tissue. Three charge variants of cGH (Rf = 0.23, 0.30, and 0.35) could be isolated by electroelution after semipreparative nondenaturing polyacrylamide gel electrophoresis of fraction B-DE-1. These charge variants showed the same apparent molecular weight (26,300 Da) by sodium dodecyl sulfate polyacrylamide gel electrophoresis under reducing conditions. Isoelectric focusing of fraction B-DE-1 revealed two major components (pI = 7.2 and 7.4) and four minor bands (pI = 6.2, 6.7, 7.1, and 7.5). It was found that fraction B-DE-1 contained a significant amount of esterified phosphate (1 nmol PO4/3.5 nmol protein) similar to that reported previously for ovine GH. The functional integrity of the cGH obtained here was characterized by two heterologous and one homologous bioassays. High activity was shown by fraction B-DE-1 in the tibia assay (1.76 UI/mg) and in the liver ornithine decarboxylase assay (sixfold over control), both made in hypophysectomized rats; and it also stimulated lipolysis (138 and 215% at 10 and 100 ng/ml, respectively) on chicken abdominal adipose tissue explants.


General and Comparative Endocrinology | 2003

Estradiol reduces pituitary responsiveness to somatostatin (SRIF-14) and down-regulates the expression of somatostatin sst2 receptors in female goldfish pituitary

Rodolfo Cardenas; Xinwei Lin; Luis Fabián Canosa; Maricela Luna; Carlos Arámburo; Richard E. Peter

Sex steroid hormones have been shown to regulate somatostatin (SRIF) gene expression in goldfish brain, which in turn influences the regulation of GH secretion. In this study, the influences of sex steroids on pituitary responsiveness to SRIF-14 and the pituitary expression of a type two SRIF receptor (sst(2)) were examined. Results from in vitro perifusion of pituitary fragments show that pituitaries from estradiol-primed sexually regressed female fish have significantly lower GH release responsiveness to pulse exposure to SRIF-14 than pituitaries from control or testosterone-treated sexually regressed females. Results from in vitro static culture show that pituitaries from sexually mature female fish have lower GH release responsiveness to SRIF-14 than those from sexually regressed females. In addition, the sst(2) receptor mRNA levels in pituitaries from mature and recrudescent female fish are significantly lower than in sexually regressed female fish. Our results indicate that estradiol acts at the level of the pituitary to regulate GH secretion by influencing the responsiveness to SRIF-14. The underlying mechanism includes, in part, reduction of the expression of sst(2) receptors, presumably leading to the lower number of the receptors available for SRIF binding.


General and Comparative Endocrinology | 2011

Expression, cellular distribution, and heterogeneity of growth hormone in the chicken cerebellum during development

Clara Alba-Betancourt; Carlos Arámburo; José Ávila-Mendoza; S.M. Ahumada-Solórzano; Martha Carranza; A.J. Rodríguez-Méndez; Steve Harvey; Maricela Luna

Although growth hormone (GH) is mainly synthesized and secreted by pituitary somatotrophs, it is now well established that the GH gene can be expressed in many extrapituitary tissues, including the central nervous system (CNS). Here we studied the expression of GH in the chicken cerebellum. Cerebellar GH expression was analyzed by in situ hybridization and cDNA sequencing, as well as by immunohistochemistry and confocal microscopy. GH heterogeneity was studied by Western blotting. We demonstrated that the GH gene was expressed in the chicken cerebellum and that its nucleotide sequence is closely homologous to pituitary GH cDNA. Within the cerebellum, GH mRNA is mainly expressed in Purkinje cells and in cells of the granular layer. GH-immunoreactivity (IR) is also widespread in the cerebellum and is similarly most abundant in the Purkinje and granular cells as identified by specific neuronal markers and histochemical techniques. The GH concentration in the cerebellum is age-related and higher in adult birds than in embryos and juveniles. Cerebellar GH-IR, as determined by Western blot under reducing conditions, is associated with several size variants (of 15, 23, 26, 29, 35, 45, 50, 55, 80 kDa), of which the 15 kDa isoform predominates (>30% among all developmental stages). GH receptor (GHR) mRNA and protein are also present in the cerebellum and are similarly mainly present in Purkinje and granular cells. Together, these data suggest that GH and GHR are locally expressed within the cerebellum and that this hormone may act as a local autocrine/paracrine factor during development of this neural tissue.


General and Comparative Endocrinology | 2010

Growth hormone expression in stromal and non-stromal cells in the bursa of Fabricius during bursal development and involution: Causal relationships?

A.J. Rodríguez-Méndez; José Luis Luna-Acosta; Martha Carranza; Steve Harvey; Carlos Arámburo; Maricela Luna

Growth hormone (GH) is expressed in the chicken bursa of Fabricius (BF), an organ that undergoes three distinct developmental stages: rapid growth (late embryogenesis until 6-8 weeks of age [w]), plateaued growth (between 10 and 15w), and involution (after 18-20w). The distribution and abundance of GH-immunoreactivity (GH-IR) and GH mRNA expression in stromal and non-stromal bursal cells during development, as well as the potential anti-apoptotic effect of GH in bursal cell survival were the focus of this study. GH mRNA expression was mainly in the epithelial layer and in epithelial buds at embryonic day (ED) 15; at 2w it was widely distributed within the follicle and in the interfollicular epithelium (IFE); at 10w it clearly diminished in the epithelium; whereas at 20w it occurred in only a few cortical cells and in the connective tissue. Parallel changes in the relative proportion of GH mRNA expression (12, 21, 13, 1%) and GH-IR (19, 18, 11, <3%) were observed at ED 15, 2w, 10w, and 20w, respectively. During embryogenesis, GH-IR co-localized considerably with IgM-IR, but scarcely with IgG-IR, whereas the opposite was observed after hatching. Significant differences in bursal cell death occurred during development, with 9.3% of cells being apoptotic at ED 15, 0.4% at 2w, 0.23% at 10w, and 21.1% at 20w. Addition of GH increased cultured cell survival by a mechanism that involved suppression (up to 41%) of caspase-3 activity. Results suggest that autocrine/paracrine actions of bursal GH are involved in the differentiation and proliferation of B lymphocytes and in BF growth and cell survival in embryonic and neonatal chicks, whereas diminished GH expression in adults may result in bursal involution.

Collaboration


Dive into the Carlos Arámburo's collaboration.

Top Co-Authors

Avatar

Maricela Luna

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Martha Carranza

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José Ávila-Mendoza

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Colin G. Scanes

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

JoséLuis Montiel

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

L. Berumen

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

A.J. Rodríguez-Méndez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Hilda Martínez-Coria

National Autonomous University of Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge