Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos Caulin is active.

Publication


Featured researches published by Carlos Caulin.


Clinical Cancer Research | 2010

Comprehensive Analysis of the MYB-NFIB Gene Fusion in Salivary Adenoid Cystic Carcinoma: Incidence, Variability, and Clinicopathologic Significance

Yoshitsugu Mitani; Jie Li; Pulivarthi H. Rao; Yi Jue Zhao; Diana Bell; Scott M. Lippman; Randal S. Weber; Carlos Caulin; Adel K. El-Naggar

Purpose: The objectives of this study were to determine the incidence of the MYB-NFIB fusion in salivary adenoid cystic carcinoma (ACC), to establish the clinicopathologic significance of the fusion, and to analyze the expression of MYB in ACCs in the context of the MYB-NFIB fusion. Experimental Design: We did an extensive analysis involving 123 cancers of the salivary gland, including primary and metastatic ACCs, and non-ACC salivary carcinomas. MYB-NFIB fusions were identified by reverse transcriptase-PCR (RT-PCR) and sequencing of the RT-PCR products, and confirmed by fluorescence in situ hybridization. MYB RNA expression was determined by quantitative RT-PCR and protein expression was analyzed by immunohistochemistry. Results: The MYB-NFIB fusion was detected in 28% primary and 35% metastatic ACCs, but not in any of the non-ACC salivary carcinomas analyzed. Different exons in both the MYB and NFIB genes were involved in the fusions, resulting in expression of multiple chimeric variants. Notably, MYB was overexpressed in the vast majority of the ACCs, although MYB expression was significantly higher in tumors carrying the MYB-NFIB fusion. The presence of the MYB-NFIB fusion was significantly associated (P = 0.03) with patients older than 50 years of age. No correlation with other clinicopathologic markers, factors, and survival was found. Conclusions: We conclude that the MYB-NFIB fusion characterizes a subset of ACCs and contributes to MYB overexpression. Additional mechanisms may be involved in MYB overexpression in ACCs lacking the MYB-NFIB fusion. These findings suggest that MYB may be a specific novel target for tumor intervention in patients with ACC. Clin Cancer Res; 16(19); 4722–31. ©2010 AACR.


Journal of Clinical Investigation | 2007

An inducible mouse model for skin cancer reveals distinct roles for gain- and loss-of-function p53 mutations

Carlos Caulin; Thao Nguyen; Gene A. Lang; Thea M. Goepfert; B. R. Brinkley; Wei Wen Cai; Guillermina Lozano; Dennis R. Roop

Mutations in ras and p53 are the most prevalent mutations found in human nonmelanoma skin cancers. Although some p53 mutations cause a loss of function, most result in expression of altered forms of p53, which may exhibit gain-of-function properties. Therefore, understanding the consequences of acquiring p53 gain-of-function versus loss-of-function mutations is critical for the generation of effective therapies for tumors harboring p53 mutations. Here we describe an inducible mouse model in which skin tumor formation is initiated by activation of an endogenous K-ras(G12D) allele. Using this model we compared the consequences of activating the p53 gain-of-function mutation p53(R172H) and of deleting the p53 gene. Activation of the p53(R172H) allele resulted in increased skin tumor formation, accelerated tumor progression, and induction of metastasis compared with deletion of p53. Consistent with these observations, the p53(R172H) tumors exhibited aneuploidy associated with centrosome amplification, which may underlie the mechanism by which p53(R172H) exerts its oncogenic properties. These results clearly demonstrate that p53 gain-of-function mutations confer poorer prognosis than loss of p53 during skin carcinogenesis and have important implications for the future design of therapies for tumors that exhibit p53 gain-of-function mutations.


Clinical Cancer Research | 2014

Mutational Landscape of Aggressive Cutaneous Squamous Cell Carcinoma

Curtis R. Pickering; Jane H. Zhou; J. Jack Lee; Jennifer Drummond; S. Andrew Peng; Rami Saade; Kenneth Y. Tsai; Jonathan L. Curry; Michael T. Tetzlaff; Stephen Y. Lai; Jun Yu; Donna M. Muzny; HarshaVardhan Doddapaneni; Eve Shinbrot; Kyle Covington; Jianhua Zhang; Sahil Seth; Carlos Caulin; Gary L. Clayman; Adel K. El-Naggar; Richard A. Gibbs; Randal S. Weber; Jeffrey N. Myers; David A. Wheeler; Mitchell J. Frederick

Purpose: Aggressive cutaneous squamous cell carcinoma (cSCC) is often a disfiguring and lethal disease. Very little is currently known about the mutations that drive aggressive cSCC. Experimental Design: Whole-exome sequencing was performed on 39 cases of aggressive cSCC to identify driver genes and novel therapeutic targets. Significantly, mutated genes were identified with MutSig or complementary methods developed to specifically identify candidate tumor suppressors based upon their inactivating mutation bias. Results: Despite the very high-mutational background caused by UV exposure, 23 candidate drivers were identified, including the well-known cancer-associated genes TP53, CDKN2A, NOTCH1, AJUBA, HRAS, CASP8, FAT1, and KMT2C (MLL3). Three novel candidate tumor suppressors with putative links to cancer or differentiation, NOTCH2, PARD3, and RASA1, were also identified as possible drivers in cSCC. KMT2C mutations were associated with poor outcome and increased bone invasion. Conclusions: The mutational spectrum of cSCC is similar to that of head and neck squamous cell carcinoma and dominated by tumor-suppressor genes. These results improve the foundation for understanding this disease and should aid in identifying and treating aggressive cSCC. Clin Cancer Res; 20(24); 6582–92. ©2014 AACR.


Cancer Research | 2004

Inducible Activation of Oncogenic K-ras Results in Tumor Formation in the Oral Cavity

Carlos Caulin; Thao Nguyen; Mary A. Longley; Zhijian Zhou; Xiao-Jing Wang; Dennis R. Roop

Mouse models for cancer represent powerful tools to analyze the causal role of genetic alterations in cancer development. We have developed a novel mouse model that allows the focal activation of mutations in stratified epithelia. Using this system, we demonstrate that activation of an oncogenic K-rasG12D allele in the oral cavity of the mouse induces oral tumor formation. The lesions that develop in these mice are classified as benign squamous papillomas. Interestingly, these tumors exhibit changes in the expression pattern of keratins similar to those observed in human premalignant oral tumors, which are reflective of early stages of tumorigenesis. These results demonstrate a causal role for oncogenic K-ras in oral tumor development. The inducible nature of this model also makes it an ideal system to study cooperative interactions between mutations in oncogenes and/or tumor suppressor genes that are similar to those observed in human tumors. To our knowledge, this is the first reported inducible mouse model for oral cancer.


Molecular Cell | 2014

Gain-of-Function Mutant p53 Promotes Cell Growth and Cancer Cell Metabolism via Inhibition of AMPK Activation

Ge Zhou; Jiping Wang; Mei Zhao; Tong Xin Xie; Noriaki Tanaka; Daisuke Sano; Ameeta A. Patel; Alexandra Ward; Vlad C. Sandulache; Samar A. Jasser; Heath D. Skinner; Alison L. Fitzgerald; Abdullah A. Osman; Yongkun Wei; Xuefeng Xia; Zhou Songyang; Gordon B. Mills; Mien Chie Hung; Carlos Caulin; Jiyong Liang; Jeffrey N. Myers

Many mutant p53 proteins (mutp53s) exert oncogenic gain-of-function (GOF) properties, but the mechanisms mediating these functions remain poorly defined. We show here that GOF mutp53s inhibit AMP-activated protein kinase (AMPK) signaling in head and neck cancer cells. Conversely, downregulation of GOF mutp53s enhances AMPK activation under energy stress, decreasing the activity of the anabolic factors acetyl-CoA carboxylase and ribosomal protein S6 and inhibiting aerobic glycolytic potential and invasive cell growth. Under conditions of energy stress, GOF mutp53s, but not wild-type p53, preferentially bind to the AMPKα subunit and inhibit AMPK activation. Given the importance of AMPK as an energy sensor and tumor suppressor that inhibits anabolic metabolism, our findings reveal that direct inhibition of AMPK activation is an important mechanism through which mutp53s can gain oncogenic function.


Clinical Cancer Research | 2016

Novel MYBL1 Gene Rearrangements with Recurrent MYBL1–NFIB Fusions in Salivary Adenoid Cystic Carcinomas Lacking t(6;9) Translocations

Yoshitsugu Mitani; Bin Liu; Pulivarthi H. Rao; Vishnupriya J. Borra; Mark E. Zafereo; Randal S. Weber; Merrill S. Kies; Guillermina Lozano; P. Andrew Futreal; Carlos Caulin; Adel K. El-Naggar

Purpose: Adenoid cystic carcinoma (ACC) is an indolent salivary gland malignancy, characterized by t(6;9) translocations and MYB–NFIB gene fusions in approximately 50% of the tumors. The genetic alterations underlying t(6;9)-negative and t(6;9)-positive/MYB–NFIB fusion–negative ACC remain unknown. To uncover the genetic alterations in ACC lacking the canonical translocation and fusion transcript and identify new abnormalities in translocation positive tumors. Experimental Design: We performed whole-genome sequencing in 21 salivary ACCs and conducted targeted molecular analyses in a validation set (81 patients). Microarray gene-expression data were also analyzed to explore the biologic differences between fusion positive and negative tumors. Results: We identified a novel MYBL1–NFIB gene fusion as a result of t(8;9) translocation and multiple rearrangements in the MYBL1 gene in 35% of the t(6;9)-negative ACCs. All MYBL1 alterations involved deletion of the C-terminal negative regulatory domain and were associated with high MYBL1 expression. Reciprocal MYB and MYBL1 expression was consistently found in ACCs. In addition, 5′-NFIB fusions that did not involve MYB/MYBL1 genes were identified in a subset of t(6;9)-positive/fusion-negative tumors. We also delineated distinct gene-expression profiles in ACCs associated with the length of the MYB or MYBL1 fusions, suggesting a biologic importance of the C-terminal part of these fusions. Conclusions: Our study defines new molecular subclasses of ACC characterized by MYBL1 rearrangements and 5′-NFIB gene fusions. Clin Cancer Res; 22(3); 725–33. ©2015 AACR.


Clinical Cancer Research | 2011

Disruptive TP53 mutation is associated with aggressive disease characteristics in an orthotopic murine model of oral tongue cancer

Daisuke Sano; Tong Xin Xie; Thomas J. Ow; Mei Zhao; Curtis R. Pickering; Ge Zhou; Vlad C. Sandulache; David A. Wheeler; Richard A. Gibbs; Carlos Caulin; Jeffrey N. Myers

Purpose: To characterize tumor growth and metastatic potential in head and neck squamous cell carcinoma (HNSCC) cell lines in an orthotopic murine model of oral tongue cancer and to correlate TP53 mutation status with these findings. Experimental Design: Cells from each of 48 HNSCC cell lines were orthotopically injected into the oral tongues of nude mice. Tumor volume, cervical lymph node metastasis, and mouse survival were recorded. Direct sequencing of the TP53 gene and Western blot analysis for the p53 protein after induction with 5-fluorouracil was conducted. Cell lines were categorized as either mutant TP53 or wild-type TP53, and lines with TP53 mutation were further categorized on the basis of type of mutation (disruptive or nondisruptive) and level of p53 protein expression. The behavior of tumors in these different groups was compared. Results: These 48 HNSCC cell lines showed a wide range of behavior from highly aggressive and metastatic to no tumor formation. Mice injected with cells harboring disruptive TP53 mutations had faster tumor growth, greater incidence of cervical lymph node metastasis, and shorter survival than mice injected with cells lacking these mutations. Conclusions: HNSCC cell lines display a wide spectrum of behavior in an orthotopic model of oral cancer. Cell lines with disruptive TP53 mutations are more aggressive in this system, corroborating clinical reports that have linked these mutations to poor patient outcome. Clin Cancer Res; 17(21); 6658–70. ©2011 AACR.


Nature Communications | 2013

Differential regulation of the REGγ–proteasome pathway by p53/TGF-β signalling and mutant p53 in cancer cells

Amjad Ali; Zhuo Wang; Junjiang Fu; Lei Ji; Jiang Liu; Lei Li; Hui Wang; Jiwu Chen; Carlos Caulin; Jeffrey N. Myers; Pei Zhang; Jianru Xiao; Bianhong Zhang; Xiaotao Li

Proteasome activity is frequently enhanced in cancer to accelerate metastasis and tumorigenesis. REGγ, a proteasome activator known to promote p53/p21/p16 degradation, is often overexpressed in cancer cells. Here we show that p53/TGF-β signalling inhibits the REGγ–20S proteasome pathway by repressing REGγ expression. Smad3 and p53 interact on the REGγ promoter via the p53RE/SBE region. Conversely, mutant p53 binds to the REGγ promoter and recruits p300. Importantly, mutant p53 prevents Smad3/N-CoR complex formation on the REGγ promoter, which enhances the activity of the REGγ–20S proteasome pathway and contributes to mutant p53 gain of function. Depletion of REGγ alters the cellular response to p53/TGF-β signalling in drug resistance, proliferation, cell cycle progression and proteasome activity. Moreover, p53 mutations show a positive correlation with REGγ expression in cancer samples. These findings suggest that targeting REGγ–20S proteasome for cancer therapy may be applicable to human tumours with abnormal p53/Smad protein status. Furthermore, this study demonstrates a link between p53/TGF-β signalling and the REGγ–20S proteasome pathway, and provides insight into the REGγ/p53 feedback loop.


Molecular Cancer Therapeutics | 2015

Wee-1 Kinase Inhibition Overcomes Cisplatin Resistance Associated with High Risk TP53 Mutations in Head and Neck Cancer through Mitotic Arrest Followed by Senescence

Abdullah A. Osman; Marcus M. Monroe; Marcus V. Ortega Alves; Ameeta A. Patel; Panagiotis Katsonis; Alison L. Fitzgerald; David M. Neskey; Mitchell J. Frederick; Sang Hyeok Woo; Carlos Caulin; Teng Kuei Hsu; Thomas O. McDonald; Marek Kimmel; Raymond E. Meyn; Olivier Lichtarge; Jeffrey N. Myers

Although cisplatin has played a role in “standard-of-care” multimodality therapy for patients with advanced squamous cell carcinoma of the head and neck (HNSCC), the rate of treatment failure remains particularly high for patients receiving cisplatin whose tumors have mutations in the TP53 gene. We found that cisplatin treatment of HNSCC cells with mutant TP53 leads to arrest of cells in the G2 phase of the cell cycle, leading us to hypothesize that the wee-1 kinase inhibitor MK-1775 would abrogate the cisplatin-induced G2 block and thereby sensitize isogenic HNSCC cells with mutant TP53 or lacking p53 expression to cisplatin. We tested this hypothesis using clonogenic survival assays, flow cytometry, and in vivo tumor growth delay experiments with an orthotopic nude mouse model of oral tongue cancer. We also used a novel TP53 mutation classification scheme to identify which TP53 mutations are associated with limited tumor responses to cisplatin treatment. Clonogenic survival analyses indicate that nanomolar concentration of MK-1775 sensitizes HNSCC cells with high-risk mutant p53 to cisplatin. Consistent with its ability to chemosensitize, MK-1775 abrogated the cisplatin-induced G2 block in p53-defective cells leading to mitotic arrest associated with a senescence-like phenotype. Furthermore, MK-1775 enhanced the efficacy of cisplatin in vivo in tumors harboring TP53 mutations. These results indicate that HNSCC cells expressing high-risk p53 mutations are significantly sensitized to cisplatin therapy by the selective wee-1 kinase inhibitor, supporting the clinical evaluation of MK-1775 in combination with cisplatin for the treatment of patients with TP53 mutant HNSCC. Mol Cancer Ther; 14(2); 608–19. ©2014 AACR.


Cancer Research | 2015

Evolutionary action score of TP53 identifies high-risk mutations associated with decreased survival and increased distant metastases in head and neck cancer

David M. Neskey; Abdullah A. Osman; Thomas J. Ow; Panagiotis Katsonis; Thomas O. McDonald; Stephanie C. Hicks; Teng Kuei Hsu; Curtis R. Pickering; Alexandra Ward; Ameeta A. Patel; John S. Yordy; Heath D. Skinner; Uma Giri; Daisuke Sano; Michael D. Story; Beth M. Beadle; Adel K. El-Naggar; Merrill S. Kies; William N. William; Carlos Caulin; Mitchell J. Frederick; Marek Kimmel; Jeffrey N. Myers; Olivier Lichtarge

TP53 is the most frequently altered gene in head and neck squamous cell carcinoma, with mutations occurring in over two-thirds of cases, but the prognostic significance of these mutations remains elusive. In the current study, we evaluated a novel computational approach termed evolutionary action (EAp53) to stratify patients with tumors harboring TP53 mutations as high or low risk, and validated this system in both in vivo and in vitro models. Patients with high-risk TP53 mutations had the poorest survival outcomes and the shortest time to the development of distant metastases. Tumor cells expressing high-risk TP53 mutations were more invasive and tumorigenic and they exhibited a higher incidence of lung metastases. We also documented an association between the presence of high-risk mutations and decreased expression of TP53 target genes, highlighting key cellular pathways that are likely to be dysregulated by this subset of p53 mutations that confer particularly aggressive tumor behavior. Overall, our work validated EAp53 as a novel computational tool that may be useful in clinical prognosis of tumors harboring p53 mutations.

Collaboration


Dive into the Carlos Caulin's collaboration.

Top Co-Authors

Avatar

Adel K. El-Naggar

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jeffrey N. Myers

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Dennis R. Roop

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Randal S. Weber

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yoshitsugu Mitani

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Olga Mejia

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Pulivarthi H. Rao

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergio Acin

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Abdullah A. Osman

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge