Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos del Ojo Elias is active.

Publication


Featured researches published by Carlos del Ojo Elias.


Lancet Infectious Diseases | 2015

Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study.

Timothy M. Walker; Thomas A. Kohl; Shaheed V. Omar; Jessica Hedge; Carlos del Ojo Elias; Phelim Bradley; Zamin Iqbal; Silke Feuerriegel; Katherine E. Niehaus; Daniel J. Wilson; David A. Clifton; Georgia Kapatai; Camilla L. C. Ip; Rory Bowden; Francis Drobniewski; Caroline Allix-Béguec; Cyril Gaudin; Julian Parkhill; Roland Diel; Philip Supply; Derrick W. Crook; E. Grace Smith; A. Sarah Walker; Nazir Ismail; Stefan Niemann; Tim Peto

Summary Background Diagnosing drug-resistance remains an obstacle to the elimination of tuberculosis. Phenotypic drug-susceptibility testing is slow and expensive, and commercial genotypic assays screen only common resistance-determining mutations. We used whole-genome sequencing to characterise common and rare mutations predicting drug resistance, or consistency with susceptibility, for all first-line and second-line drugs for tuberculosis. Methods Between Sept 1, 2010, and Dec 1, 2013, we sequenced a training set of 2099 Mycobacterium tuberculosis genomes. For 23 candidate genes identified from the drug-resistance scientific literature, we algorithmically characterised genetic mutations as not conferring resistance (benign), resistance determinants, or uncharacterised. We then assessed the ability of these characterisations to predict phenotypic drug-susceptibility testing for an independent validation set of 1552 genomes. We sought mutations under similar selection pressure to those characterised as resistance determinants outside candidate genes to account for residual phenotypic resistance. Findings We characterised 120 training-set mutations as resistance determining, and 772 as benign. With these mutations, we could predict 89·2% of the validation-set phenotypes with a mean 92·3% sensitivity (95% CI 90·7–93·7) and 98·4% specificity (98·1–98·7). 10·8% of validation-set phenotypes could not be predicted because uncharacterised mutations were present. With an in-silico comparison, characterised resistance determinants had higher sensitivity than the mutations from three line-probe assays (85·1% vs 81·6%). No additional resistance determinants were identified among mutations under selection pressure in non-candidate genes. Interpretation A broad catalogue of genetic mutations enable data from whole-genome sequencing to be used clinically to predict drug resistance, drug susceptibility, or to identify drug phenotypes that cannot yet be genetically predicted. This approach could be integrated into routine diagnostic workflows, phasing out phenotypic drug-susceptibility testing while reporting drug resistance early. Funding Wellcome Trust, National Institute of Health Research, Medical Research Council, and the European Union.


The Lancet Respiratory Medicine | 2016

Rapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: a prospective study

Louise Pankhurst; Carlos del Ojo Elias; Antonina A. Votintseva; Timothy M. Walker; Kevin Cole; Jim Davies; Jilles M. Fermont; Deborah Gascoyne-Binzi; Thomas A. Kohl; Clare Kong; Nadine Lemaitre; Stefan Niemann; John Paul; Thomas R. Rogers; Emma Roycroft; E. Grace Smith; Philip Supply; Patrick Tang; Mark H. Wilcox; Sarah Wordsworth; David H. Wyllie; Li Xu; Derrick W. Crook

Summary Background Slow and cumbersome laboratory diagnostics for Mycobacterium tuberculosis complex (MTBC) risk delayed treatment and poor patient outcomes. Whole-genome sequencing (WGS) could potentially provide a rapid and comprehensive diagnostic solution. In this prospective study, we compare real-time WGS with routine MTBC diagnostic workflows. Methods We compared sequencing mycobacteria from all newly positive liquid cultures with routine laboratory diagnostic workflows across eight laboratories in Europe and North America for diagnostic accuracy, processing times, and cost between Sept 6, 2013, and April 14, 2014. We sequenced specimens once using local Illumina MiSeq platforms and processed data centrally using a semi-automated bioinformatics pipeline. We identified species or complex using gene presence or absence, predicted drug susceptibilities from resistance-conferring mutations identified from reference-mapped MTBC genomes, and calculated genetic distance to previously sequenced UK MTBC isolates to detect outbreaks. WGS data processing and analysis was done by staff masked to routine reference laboratory and clinical results. We also did a microcosting analysis to assess the financial viability of WGS-based diagnostics. Findings Compared with routine results, WGS predicted species with 93% (95% CI 90–96; 322 of 345 specimens; 356 mycobacteria specimens submitted) accuracy and drug susceptibility also with 93% (91–95; 628 of 672 specimens; 168 MTBC specimens identified) accuracy, with one sequencing attempt. WGS linked 15 (16% [95% CI 10–26]) of 91 UK patients to an outbreak. WGS diagnosed a case of multidrug-resistant tuberculosis before routine diagnosis was completed and discovered a new multidrug-resistant tuberculosis cluster. Full WGS diagnostics could be generated in a median of 9 days (IQR 6–10), a median of 21 days (IQR 14–32) faster than final reference laboratory reports were produced (median of 31 days [IQR 21–44]), at a cost of £481 per culture-positive specimen, whereas routine diagnosis costs £518, equating to a WGS-based diagnosis cost that is 7% cheaper annually than are present diagnostic workflows. Interpretation We have shown that WGS has a scalable, rapid turnaround, and is a financially feasible method for full MTBC diagnostics. Continued improvements to mycobacterial processing, bioinformatics, and analysis will improve the accuracy, speed, and scope of WGS-based diagnosis. Funding National Institute for Health Research, Department of Health, Wellcome Trust, British Colombia Centre for Disease Control Foundation for Population and Public Health, Department of Clinical Microbiology, Trinity College Dublin.


The Lancet Respiratory Medicine | 2014

Assessment of Mycobacterium tuberculosis transmission in Oxfordshire, UK, 2007-12, with whole pathogen genome sequences: an observational study.

Timothy M. Walker; Maeve K Lalor; Agnieszka Broda; Luisa Saldana Ortega; Marcus Morgan; Lynne Parker; Sheila Churchill; Karen Bennett; Tanya Golubchik; Adam Giess; Carlos del Ojo Elias; Katie Jeffery; I.C.J.W. Bowler; Ian Laurenson; Anne Barrett; Francis Drobniewski; Noel D. McCarthy; Laura F Anderson; Ibrahim Abubakar; H Lucy Thomas; Philip Monk; E. Grace Smith; A. Sarah Walker; Derrick W. Crook; Tim Peto; Christopher Conlon

Summary Background Patients born outside the UK have contributed to a 20% rise in the UK’s tuberculosis incidence since 2000, but their effect on domestic transmission is not known. Here we use whole-genome sequencing to investigate the epidemiology of tuberculosis transmission in an unselected population over 6 years. Methods We identified all residents with Oxfordshire postcodes with a Mycobacterium tuberculosis culture or a clinical diagnosis of tuberculosis between Jan 1, 2007, and Dec 31, 2012, using local databases and checking against the national Enhanced Tuberculosis Surveillance database. We used Illumina technology to sequence all available M tuberculosis cultures from identified cases. Sequences were clustered by genetic relatedness and compared retrospectively with contact investigations. The first patient diagnosed in each cluster was defined as the index case, with links to subsequent cases assigned first by use of any epidemiological linkage, then by genetic distance, and then by timing of diagnosis. Findings Although we identified 384 patients with a diagnosis of tuberculosis, country of birth was known for 380 and we sequenced isolates from 247 of 269 cases with culture-confirmed disease. 39 cases were genomically linked within 13 clusters, implying 26 local transmission events. Only 11 of 26 possible transmissions had been previously identified through contact tracing. Of seven genomically confirmed household clusters, five contained additional genomic links to epidemiologically unidentified non-household members. 255 (67%) patients were born in a country with high tuberculosis incidence, conferring a local incidence of 109 cases per 100 000 population per year in Oxfordshire, compared with 3·5 cases per 100 000 per year for those born in low-incidence countries. However, patients born in the low-incidence countries, predominantly UK, were more likely to have pulmonary disease (adjusted odds ratio 1·8 [95% CI 1·2–2·9]; p=0·009), social risk factors (4·4 [2·0–9·4]; p<0·0001), and be part of a local transmission cluster (4·8 [1·6–14·8]; p=0·006). Interpretation Although inward migration has contributed to the overall tuberculosis incidence, our findings suggest that most patients born in high-incidence countries reactivate latent infection acquired abroad and are not involved in local onward transmission. Systematic screening of new entrants could further improve tuberculosis control, but it is important that health care remains accessible to all individuals, especially high-risk groups, if tuberculosis control is not to be jeopardised.


Lancet Infectious Diseases | 2017

Effects of control interventions on Clostridium difficile infection in England: an observational study

Kate E. Dingle; Xavier Didelot; T Phuong Quan; David W. Eyre; Nicole Stoesser; Tanya Golubchik; Rosalind M. Harding; Daniel J. Wilson; David Griffiths; Alison Vaughan; John Finney; David H. Wyllie; Sarah Oakley; Warren N. Fawley; Jane Freeman; K. Morris; Jessica Martin; Philip Howard; Sherwood L. Gorbach; Ellie J. C. Goldstein; Diane M. Citron; Susan Hopkins; Russell Hope; Alan P. Johnson; Mark H. Wilcox; Tim Peto; A. Sarah Walker; Derrick W. Crook; Carlos del Ojo Elias; Charles Crichton

Summary Background The control of Clostridium difficile infections is an international clinical challenge. The incidence of C difficile in England declined by roughly 80% after 2006, following the implementation of national control policies; we tested two hypotheses to investigate their role in this decline. First, if C difficile infection declines in England were driven by reductions in use of particular antibiotics, then incidence of C difficile infections caused by resistant isolates should decline faster than that caused by susceptible isolates across multiple genotypes. Second, if C difficile infection declines were driven by improvements in hospital infection control, then transmitted (secondary) cases should decline regardless of susceptibility. Methods Regional (Oxfordshire and Leeds, UK) and national data for the incidence of C difficile infections and antimicrobial prescribing data (1998–2014) were combined with whole genome sequences from 4045 national and international C difficile isolates. Genotype (multilocus sequence type) and fluoroquinolone susceptibility were determined from whole genome sequences. The incidence of C difficile infections caused by fluoroquinolone-resistant and fluoroquinolone-susceptible isolates was estimated with negative-binomial regression, overall and per genotype. Selection and transmission were investigated with phylogenetic analyses. Findings National fluoroquinolone and cephalosporin prescribing correlated highly with incidence of C difficile infections (cross-correlations >0·88), by contrast with total antibiotic prescribing (cross-correlations <0·59). Regionally, C difficile decline was driven by elimination of fluoroquinolone-resistant isolates (approximately 67% of Oxfordshire infections in September, 2006, falling to approximately 3% in February, 2013; annual incidence rate ratio 0·52, 95% CI 0·48–0·56 vs fluoroquinolone-susceptible isolates: 1·02, 0·97–1·08). C difficile infections caused by fluoroquinolone-resistant isolates declined in four distinct genotypes (p<0·01). The regions of phylogenies containing fluoroquinolone-resistant isolates were short-branched and geographically structured, consistent with selection and rapid transmission. The importance of fluoroquinolone restriction over infection control was shown by significant declines in inferred secondary (transmitted) cases caused by fluoroquinolone-resistant isolates with or without hospital contact (p<0·0001) versus no change in either group of cases caused by fluoroquinolone-susceptible isolates (p>0·2). Interpretation Restricting fluoroquinolone prescribing appears to explain the decline in incidence of C difficile infections, above other measures, in Oxfordshire and Leeds, England. Antimicrobial stewardship should be a central component of C difficile infection control programmes. Funding UK Clinical Research Collaboration (Medical Research Council, Wellcome Trust, National Institute for Health Research); NIHR Oxford Biomedical Research Centre; NIHR Health Protection Research Unit on Healthcare Associated Infection and Antimicrobial Resistance (Oxford University in partnership with Public Health England [PHE]), and on Modelling Methodology (Imperial College, London in partnership with PHE); and the Health Innovation Challenge Fund.


Journal of Clinical Microbiology | 2017

Same-day diagnostic and surveillance data for tuberculosis via whole genome sequencing of direct respiratory samples.

Antonina A. Votintseva; Phelim Bradley; Louise Pankhurst; Carlos del Ojo Elias; Matthew Loose; Kayzad Nilgiriwala; Anirvan Chatterjee; E. Grace Smith; Nicolas Sanderson; Timothy M. Walker; Marcus Morgan; David H. Wyllie; A. Sarah Walker; Tim Peto; Derrick W. Crook; Zamin Iqbal

ABSTRACT Routine full characterization of Mycobacterium tuberculosis is culture based, taking many weeks. Whole-genome sequencing (WGS) can generate antibiotic susceptibility profiles to inform treatment, augmented with strain information for global surveillance; such data could be transformative if provided at or near the point of care. We demonstrate a low-cost method of DNA extraction directly from patient samples for M. tuberculosis WGS. We initially evaluated the method by using the Illumina MiSeq sequencer (40 smear-positive respiratory samples obtained after routine clinical testing and 27 matched liquid cultures). M. tuberculosis was identified in all 39 samples from which DNA was successfully extracted. Sufficient data for antibiotic susceptibility prediction were obtained from 24 (62%) samples; all results were concordant with reference laboratory phenotypes. Phylogenetic placement was concordant between direct and cultured samples. With Illumina MiSeq/MiniSeq, the workflow from patient sample to results can be completed in 44/16 h at a reagent cost of £96/£198 per sample. We then employed a nonspecific PCR-based library preparation method for sequencing on an Oxford Nanopore Technologies MinION sequencer. We applied this to cultured Mycobacterium bovis strain BCG DNA and to combined culture-negative sputum DNA and BCG DNA. For flow cell version R9.4, the estimated turnaround time from patient to identification of BCG, detection of pyrazinamide resistance, and phylogenetic placement was 7.5 h, with full susceptibility results 5 h later. Antibiotic susceptibility predictions were fully concordant. A critical advantage of MinION is the ability to continue sequencing until sufficient coverage is obtained, providing a potential solution to the problem of variable amounts of M. tuberculosis DNA in direct samples.


Clinical Infectious Diseases | 2017

Insidious risk of severe mycobacterium chimaera infection in cardiac surgery patients

Meera Chand; Theresa Lamagni; Katharina Kranzer; Jessica Hedge; Ginny Moore; Simon Parks; Samuel Collins; Carlos del Ojo Elias; Nada Ahmed; Timothy Brown; E. Grace Smith; Peter Hoffman; Peter Kirwan; Brendan Mason; Alison Smith-Palmer; Philip Veal; Maeve K Lalor; Allan Bennett; James T. Walker; Alicia Yeap; Antonio Isidro Carrion Martin; Gayle Dolan; Sonia Bhatt; Andrew Skingsley; Andre Charlett; David Pearce; Katherine Russell; Simon Kendall; Andrew Klein; Stephen Robins

Background. An urgent UK investigation was launched to assess risk of invasive Mycobacterium chimaera infection in cardiothoracic surgery and a possible association with cardiopulmonary bypass heater-cooler units following alerts in Switzerland and The Netherlands. Methods. Parallel investigations were pursued: (1) identification of cardiopulmonary bypass–associated M. chimaera infection through national laboratory and hospital admissions data linkage; (2) cohort study to assess patient risk; (3) microbiological and aerobiological investigations of heater-coolers in situ and under controlled laboratory conditions; and (4) whole-genome sequencing of clinical and environmental isolates. Results. Eighteen probable cases of cardiopulmonary bypass–associated M. chimaera infection were identified; all except one occurred in adults. Patients had undergone valve replacement in 11 hospitals between 2007 and 2015, a median of 19 months prior to onset (range, 3 months to 5 years). Risk to patients increased after 2010 from <0.2 to 1.65 per 10000 person-years in 2013, a 9-fold rise for infections within 2 years of surgery (rate ratio, 9.08 [95% CI, 1.81–87.76]). Endocarditis was the most common presentation (n = 11). To date, 9 patients have died. Investigations identified aerosol release through breaches in heater-cooler tanks. Mycobacterium chimaera and other pathogens were recovered from water and air samples. Phylogenetic analysis found close clustering of strains from probable cases. Conclusions. We identified low but escalating risk of severe M. chimaera infection associated with heater-coolers with cases in a quarter of cardiothoracic centers. Our investigations strengthen etiological evidence for the role of heater-coolers in transmission and raise the possibility of an ongoing, international point-source outbreak. Active management of heater-coolers and heightened clinical awareness are imperative given the consequences of infection.


The Journal of Infectious Diseases | 2014

Whole-Genome Sequencing Demonstrates That Fidaxomicin Is Superior to Vancomycin for Preventing Reinfection and Relapse of Infection With Clostridium difficile

David W. Eyre; Farah Kondori Babakhani; David Griffiths; Jaime Seddon; Carlos del Ojo Elias; Sherwood L. Gorbach; Tim Peto; Derrick W. Crook; A. Sarah Walker

Whole-genome sequencing was used to determine whether the reductions in recurrence of Clostridium difficile infection observed with fidaxomicin in pivotal phase 3 trials occurred by preventing relapse of the same infection, by preventing reinfection with a new strain, or by preventing both outcomes. Paired isolates of C. difficile were available from 93 of 199 participants with recurrences (28 were treated with fidaxomicin, and 65 were treated with vancomycin). Given C. difficile evolutionary rates, paired samples ≤2 single-nucleotide variants (SNVs) apart were considered relapses, paired samples >10 SNVs apart were considered reinfection, and those 3–10 SNVs apart (or without whole-genome sequences) were considered indeterminate in a competing risks survival analysis. Fidaxomicin reduced the risk of both relapse (competing risks hazard ratio [HR], 0.40 [95% confidence interval {CI}, .25–.66]; P = .0003) and reinfection (competing risks HR, 0.33 [95% CI, 0.11–1.01]; P = .05).


Journal of Clinical Microbiology | 2015

Mycobacterial DNA Extraction for Whole-Genome Sequencing from Early Positive Liquid (MGIT) Cultures

Antonina A. Votintseva; Louise Pankhurst; Luke Anson; Marcus Morgan; Deborah Gascoyne-Binzi; Timothy M. Walker; T Phuong Quan; David H. Wyllie; Carlos del Ojo Elias; Mark H. Wilcox; A. Sarah Walker; Tim Peto; Derrick W. Crook

ABSTRACT We developed a low-cost and reliable method of DNA extraction from as little as 1 ml of early positive mycobacterial growth indicator tube (MGIT) cultures that is suitable for whole-genome sequencing to identify mycobacterial species and predict antibiotic resistance in clinical samples. The DNA extraction method is based on ethanol precipitation supplemented by pretreatment steps with a MolYsis kit or saline wash for the removal of human DNA and a final DNA cleanup step with solid-phase reversible immobilization beads. The protocol yielded ≥0.2 ng/μl of DNA for 90% (MolYsis kit) and 83% (saline wash) of positive MGIT cultures. A total of 144 (94%) of the 154 samples sequenced on the MiSeq platform (Illumina) achieved the target of 1 million reads, with <5% of reads derived from human or nasopharyngeal flora for 88% and 91% of samples, respectively. A total of 59 (98%) of 60 samples that were identified by the national mycobacterial reference laboratory (NMRL) as Mycobacterium tuberculosis were successfully mapped to the H37Rv reference, with >90% coverage achieved. The DNA extraction protocol, therefore, will facilitate fast and accurate identification of mycobacterial species and resistance using a range of bioinformatics tools.


Journal of Antimicrobial Chemotherapy | 2015

Colonization with Enterobacteriaceae producing ESBLs in children attending pre-school childcare facilities in the Lao People's Democratic Republic

Nicole Stoesser; Sivilay Xayaheuang; Manivanh Vongsouvath; Koukeo Phommasone; Ivo Elliott; Carlos del Ojo Elias; Derrick W. Crook; Paul N. Newton; Yves Buisson; Sue J. Lee; David A. B. Dance

Objectives Intestinal carriage constitutes an important reservoir of antimicrobial-resistant bacteria, with some of the highest rates reported from Asia. Antibiotic resistance has been little studied in Laos, where some antibiotics are available without restriction, but others such as carbapenems are not available. Patients and methods We collected stools from 397 healthy children in 12 randomly selected pre-school childcare facilities in and around Vientiane. Colonization with ESBL-producing Enterobacteriaceae (ESBLE) and carbapenemase-producing Enterobacteriaceae (CPE) was detected using a disc diffusion screening test and ESBLE were characterized using WGS. Risk factor data were collected by questionnaire. Results Ninety-two children (23%) were colonized with ESBLE, mainly Escherichia coli carrying blaCTX-M and Klebsiella pneumoniae carrying blaSHV or blaCTX-M, which were frequently resistant to multiple antibiotic classes. Although residence in Vientiane Capital, foreign travel, higher maternal level of education, antibiotic use in the preceding 3 months and attending a childcare facility with a ‘good’ level of hygiene were all associated with ESBLE colonization on univariable analysis, a significant association remained only for antibiotic use when a stepwise approach was used with a multivariate random-effects model. WGS analysis suggested transmission in both childcare facilities and community settings. Conclusions The high prevalence of paediatric colonization with ESBLE in Laos, one of the highest reported in Asia, is probably the result of inappropriate antibiotic use. Paediatric colonization with CPE was not identified in this study, but it is important to continue to monitor the spread of antibiotic-resistant Enterobacteriaceae in Laos.


Journal of Clinical Microbiology | 2017

Evaluation of Whole-Genome Sequencing for Mycobacterial Species Identification and Drug Susceptibility Testing in a Clinical Setting: a Large-Scale Prospective Assessment of Performance against Line Probe Assays and Phenotyping

T Phuong Quan; Zharain Bawa; Dona Foster; Tim Walker; Carlos del Ojo Elias; Priti Rathod; Zamin Iqbal; Phelim Bradley; Janet Mowbray; A. Sarah Walker; Derrick W. Crook; David H. Wyllie; Tim Peto; E. Grace Smith

ABSTRACT Use of whole-genome sequencing (WGS) for routine mycobacterial species identification and drug susceptibility testing (DST) is becoming a reality. We compared the performances of WGS and standard laboratory workflows prospectively, by parallel processing at a major mycobacterial reference service over the course of 1 year, for species identification, first-line Mycobacterium tuberculosis resistance prediction, and turnaround time. Among 2,039 isolates with line probe assay results for species identification, 74 (3.6%) failed sequencing or WGS species identification. Excluding these isolates, clinically important species were identified for 1,902 isolates, of which 1,825 (96.0%) were identified as the same species by WGS and the line probe assay. A total of 2,157 line probe test results for detection of resistance to the first-line drugs isoniazid and rifampin were available for 728 M. tuberculosis complex isolates. Excluding 216 (10.0%) cases where there were insufficient sequencing data for WGS to make a prediction, overall concordance was 99.3% (95% confidence interval [CI], 98.9 to 99.6%), sensitivity was 97.6% (91.7 to 99.7%), and specificity was 99.5% (99.0 to 99.7%). A total of 2,982 phenotypic DST results were available for 777 M. tuberculosis complex isolates. Of these, 356 (11.9%) had no WGS comparator due to insufficient sequencing data, and in 154 (5.2%) cases the WGS prediction was indeterminate due to discovery of novel, previously uncharacterized mutations. Excluding these data, overall concordance was 99.2% (98.7 to 99.5%), sensitivity was 94.2% (88.4 to 97.6%), and specificity was 99.4% (99.0 to 99.7%). Median processing times for the routine laboratory tests versus WGS were similar overall, i.e., 20 days (interquartile range [IQR], 15 to 31 days) and 21 days (15 to 29 days), respectively (P = 0.41). In conclusion, WGS predicts species and drug susceptibility with great accuracy, but work is needed to increase the proportion of predictions made.

Collaboration


Dive into the Carlos del Ojo Elias's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim Peto

University of Oxford

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge