Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Sarah Walker is active.

Publication


Featured researches published by A. Sarah Walker.


Lancet Infectious Diseases | 2013

Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study

Timothy M. Walker; Camilla L. C. Ip; Ruth H Harrell; Jason T. Evans; Georgia Kapatai; Martin Dedicoat; David W. Eyre; Daniel J. Wilson; Peter M. Hawkey; Derrick W. Crook; Julian Parkhill; David Harris; A. Sarah Walker; Rory Bowden; Philip Monk; E. Grace Smith; Tim Peto

Summary Background Tuberculosis incidence in the UK has risen in the past decade. Disease control depends on epidemiological data, which can be difficult to obtain. Whole-genome sequencing can detect microevolution within Mycobacterium tuberculosis strains. We aimed to estimate the genetic diversity of related M tuberculosis strains in the UK Midlands and to investigate how this measurement might be used to investigate community outbreaks. Methods In a retrospective observational study, we used Illumina technology to sequence M tuberculosis genomes from an archive of frozen cultures. We characterised isolates into four groups: cross-sectional, longitudinal, household, and community. We measured pairwise nucleotide differences within hosts and between hosts in household outbreaks and estimated the rate of change in DNA sequences. We used the findings to interpret network diagrams constructed from 11 community clusters derived from mycobacterial interspersed repetitive-unit–variable-number tandem-repeat data. Findings We sequenced 390 separate isolates from 254 patients, including representatives from all five major lineages of M tuberculosis. The estimated rate of change in DNA sequences was 0·5 single nucleotide polymorphisms (SNPs) per genome per year (95% CI 0·3–0·7) in longitudinal isolates from 30 individuals and 25 families. Divergence is rarely higher than five SNPs in 3 years. 109 (96%) of 114 paired isolates from individuals and households differed by five or fewer SNPs. More than five SNPs separated isolates from none of 69 epidemiologically linked patients, two (15%) of 13 possibly linked patients, and 13 (17%) of 75 epidemiologically unlinked patients (three-way comparison exact p<0·0001). Genetic trees and clinical and epidemiological data suggest that super-spreaders were present in two community clusters. Interpretation Whole-genome sequencing can delineate outbreaks of tuberculosis and allows inference about direction of transmission between cases. The technique could identify super-spreaders and predict the existence of undiagnosed cases, potentially leading to early treatment of infectious patients and their contacts. Funding Medical Research Council, Wellcome Trust, National Institute for Health Research, and the Health Protection Agency.


Journal of Clinical Microbiology | 2010

Multilocus Sequence Typing of Clostridium difficile

David Griffiths; Warren N. Fawley; Melina Kachrimanidou; Rory Bowden; Derrick W. Crook; Rowena Fung; Tanya Golubchik; Rosalind M. Harding; Katie Jeffery; Keith A. Jolley; Richard Kirton; Tim Peto; Gareth Rees; Nicole Stoesser; Alison Vaughan; A. Sarah Walker; Bernadette C. Young; Mark H. Wilcox; Kate E. Dingle

ABSTRACT A robust high-throughput multilocus sequence typing (MLST) scheme for Clostridium difficile was developed and validated using a diverse collection of 50 reference isolates representing 45 different PCR ribotypes and 102 isolates from recent clinical samples. A total of 49 PCR ribotypes were represented overall. All isolates were typed by MLST and yielded 40 sequence types (STs). A web-accessible database was set up (http://pubmlst.org/cdifficile/ ) to facilitate the dissemination and comparison of C. difficile MLST genotyping data among laboratories. MLST and PCR ribotyping were similar in discriminatory abilities, having indices of discrimination of 0.90 and 0.92, respectively. Some STs corresponded to a single PCR ribotype (32/40), other STs corresponded to multiple PCR ribotypes (8/40), and, conversely, the PCR ribotype was not always predictive of the ST. The total number of variable nucleotide sites in the concatenated MLST sequences was 103/3,501 (2.9%). Concatenated MLST sequences were used to construct a neighbor-joining tree which identified four phylogenetic groups of STs and one outlier (ST-11; PCR ribotype 078). These groups apparently correlate with clades identified previously by comparative genomics. The MLST scheme was sufficiently robust to allow direct genotyping of C. difficile in total stool DNA extracts without isolate culture. The direct (nonculture) MLST approach may prove useful as a rapid genotyping method, potentially benefiting individual patients and informing hospital infection control.


Lancet Infectious Diseases | 2015

Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study.

Timothy M. Walker; Thomas A. Kohl; Shaheed V. Omar; Jessica Hedge; Carlos del Ojo Elias; Phelim Bradley; Zamin Iqbal; Silke Feuerriegel; Katherine E. Niehaus; Daniel J. Wilson; David A. Clifton; Georgia Kapatai; Camilla L. C. Ip; Rory Bowden; Francis Drobniewski; Caroline Allix-Béguec; Cyril Gaudin; Julian Parkhill; Roland Diel; Philip Supply; Derrick W. Crook; E. Grace Smith; A. Sarah Walker; Nazir Ismail; Stefan Niemann; Tim Peto

Summary Background Diagnosing drug-resistance remains an obstacle to the elimination of tuberculosis. Phenotypic drug-susceptibility testing is slow and expensive, and commercial genotypic assays screen only common resistance-determining mutations. We used whole-genome sequencing to characterise common and rare mutations predicting drug resistance, or consistency with susceptibility, for all first-line and second-line drugs for tuberculosis. Methods Between Sept 1, 2010, and Dec 1, 2013, we sequenced a training set of 2099 Mycobacterium tuberculosis genomes. For 23 candidate genes identified from the drug-resistance scientific literature, we algorithmically characterised genetic mutations as not conferring resistance (benign), resistance determinants, or uncharacterised. We then assessed the ability of these characterisations to predict phenotypic drug-susceptibility testing for an independent validation set of 1552 genomes. We sought mutations under similar selection pressure to those characterised as resistance determinants outside candidate genes to account for residual phenotypic resistance. Findings We characterised 120 training-set mutations as resistance determining, and 772 as benign. With these mutations, we could predict 89·2% of the validation-set phenotypes with a mean 92·3% sensitivity (95% CI 90·7–93·7) and 98·4% specificity (98·1–98·7). 10·8% of validation-set phenotypes could not be predicted because uncharacterised mutations were present. With an in-silico comparison, characterised resistance determinants had higher sensitivity than the mutations from three line-probe assays (85·1% vs 81·6%). No additional resistance determinants were identified among mutations under selection pressure in non-candidate genes. Interpretation A broad catalogue of genetic mutations enable data from whole-genome sequencing to be used clinically to predict drug resistance, drug susceptibility, or to identify drug phenotypes that cannot yet be genetically predicted. This approach could be integrated into routine diagnostic workflows, phasing out phenotypic drug-susceptibility testing while reporting drug resistance early. Funding Wellcome Trust, National Institute of Health Research, Medical Research Council, and the European Union.


AIDS | 2009

Non-AIDS-defining deaths and immunodeficiency in the era of combination antiretroviral therapy.

Benoît Marin; Rodolphe Thiébaut; Heiner C. Bucher; Virginie Rondeau; Dominique Costagliola; Maria Dorrucci; Osamah Hamouda; Maria Prins; A. Sarah Walker; Kholoud Porter; Caroline Sabin; Geneviève Chêne

Objective:To assess whether immunodeficiency is associated with the most frequent non-AIDS-defining causes of death in the era of combination antiretroviral therapy (cART). Design:Observational multicentre cohorts. Methods:Twenty-three cohorts of adults with estimated dates of human immunodeficiency virus (HIV) seroconversion were considered. Patients were seroconverters followed within the cART era. Measurements were latest CD4, nadir CD4 and time spent with CD4 cell count less than 350 cells/μl. Outcomes were specific causes of death using a standardized classification. Results:Among 9858 patients (71 230 person-years follow-up), 597 died, 333 (55.7%) from non-AIDS-defining causes. Non-AIDS-defining infection, liver disease, non-AIDS-defining malignancy and cardiovascular disease accounted for 53% of non-AIDS deaths. For each 100 cells/μl increment in the latest CD4 cell count, we found a 64% (95% confidence interval 58–69%) reduction in risk of death from AIDS-defining causes and significant reductions in death from non-AIDS infections (32, 18–44%), end-stage liver disease (33, 18–46%) and non-AIDS malignancies (34, 21–45%). Non-AIDS-defining causes of death were also associated with nadir CD4 while being cART-naive or duration of exposure to immunosuppression. No relationship between risk of death from cardiovascular disease and CD4 cell count was found though there was a raised risk associated with elevated HIV RNA. Conclusion:In the cART era, the most frequent non-AIDS-defining causes of death are associated with immunodeficiency, only cardiovascular disease was associated with high viral replication. Avoiding profound and mild immunodeficiency, through earlier initiation of cART, may impact on morbidity and mortality of HIV-infected patients.


Clinical Infectious Diseases | 2012

Fidaxomicin Versus Vancomycin for Clostridium difficile Infection: Meta-analysis of Pivotal Randomized Controlled Trials

Derrick W. Crook; A. Sarah Walker; Yin Kean; Karl Weiss; Oliver A. Cornely; Mark A. Miller; Roberto Esposito; Thomas J. Louie; Nicole Stoesser; Bernadette C. Young; Brian Angus; Sherwood L. Gorbach; Tim Peto

Two recently completed phase 3 trials (003 and 004) showed fidaxomicin to be noninferior to vancomycin for curing Clostridium difficile infection (CDI) and superior for reducing CDI recurrences. In both studies, adults with active CDI were randomized to receive blinded fidaxomicin 200 mg twice daily or vancomycin 125 mg 4 times a day for 10 days. Post hoc exploratory intent-to-treat (ITT) time-to-event analyses were undertaken on the combined study 003 and 004 data, using fixed-effects meta-analysis and Cox regression models. ITT analysis of the combined 003/004 data for 1164 patients showed that fidaxomicin reduced persistent diarrhea, recurrence, or death by 40% (95% confidence interval [CI], 26%–51%; P < .0001) compared with vancomycin through day 40. A 37% (95% CI, 2%–60%; P = .037) reduction in persistent diarrhea or death was evident through day 12 (heterogeneity P = .50 vs 13–40 days), driven by 7 (1.2%) fidaxomicin versus 17 (2.9%) vancomycin deaths at <12 days. Low albumin level, low eosinophil count, and CDI treatment preenrollment were risk factors for persistent diarrhea or death at 12 days, and CDI in the previous 3 months was a risk factor for recurrence (all P < .01). Fidaxomicin has the potential to substantially improve outcomes from CDI.


PLOS Medicine | 2012

Characterisation of Clostridium difficile hospital ward-based transmission using extensive epidemiological data and molecular typing.

A. Sarah Walker; David W. Eyre; David H. Wyllie; Kate E. Dingle; Rosalind M. Harding; Lily O'Connor; David Griffiths; Ali Vaughan; John Finney; Mark H. Wilcox; Derrick W. Crook; Tim Peto

A population-based study in Oxfordshire (UK) hospitals by Sarah Walker and colleagues finds that in an endemic setting with good infection control, ward-based contact cannot account for most new cases of Clostridium difficile infection.


Clinical Infectious Diseases | 2013

Relationship between bacterial strain type, host biomarkers, and mortality in Clostridium difficile infection.

A. Sarah Walker; David W. Eyre; David H. Wyllie; Kate E. Dingle; David Griffiths; Brian Shine; Sarah Oakley; Lily O'Connor; John Finney; Alison Vaughan; Derrick W. Crook; Mark H. Wilcox; Tim Peto

Clostridium difficile genotype predicts 14-day mortality in 1893 enzyme immunoassay–positive/culture-positive adults. Excess mortality correlates with genotype-specific changes in biomarkers, strongly implicating inflammatory pathways as a major influence on poor outcome. Polymerase chain reaction ribotype 078/ST 11(clade 5) is associated with high mortality; ongoing surveillance remains essential.


Clinical Infectious Diseases | 2008

Severe Renal Dysfunction and Risk Factors Associated with Renal Impairment in HIV-Infected Adults in Africa Initiating Antiretroviral Therapy

Andrew Reid; Wolfgang Stöhr; A. Sarah Walker; Ian G. Williams; Cissy Kityo; Peter Hughes; Andrew Kambugu; Charles F. Gilks; Peter Mugyenyi; Paula Munderi; James Hakim; Diana M. Gibb

BACKGROUND We sought to investigate renal function in previously untreated symptomatic human immunodeficiency virus (HIV)-infected adults with CD4(+) cell counts of <200 cells/mm(3) who were undergoing antiretroviral therapy (ART) in Africa. METHODS The study was an observational analysis within a randomized trial of ART management strategies that included 3316 participants with baseline serum creatinine levels of < or =360 micromol/L. Creatinine levels were measured before ART initiation, at weeks 4 and 12 of therapy, and every 12 weeks thereafter. We calculated estimated glomerular filtration rate (eGFR) using the Cockcroft-Gault formula. We analyzed the incidence of severely decreased eGFR (<30 mL/min/1.73 m(2)) and changes in eGFR to 96 weeks, considering demographic data, type of ART, and baseline biochemical and hematological characteristics as predictors, using random-effects models. RESULTS Sixty-five percent of the participants were women. Median values at baseline were as follows: age, 37 years; weight, 57 kg; CD4(+) cell count, 86 cells/mm(3); and eGFR, 89 mL/min/1.73 m(2). Of the participants, 1492 (45%) had mild (> or =60 but <90 mL/min/1.73 m(2)) and 237 (7%) had moderate (> or =30 but <60 mL/min/1.73 m(2)) impairments in eGFR. First-line ART regimens included zidovudine-lamivudine plus tenofovir disoproxil fumarate (for 74% of patients), nevirapine (16%), and abacavir (9%) (mostly nonrandomized allocation). After ART initiation, the median eGFR was 89-91 mL/min/1.73 m(2) for the period from week 4 through week 96. Fifty-two participants (1.6%) developed severe reductions in eGFR by week 96; there was no statistically significant difference between these patients and others with respect to first-line ART regimen received (P = .94). Lower baseline eGFR or hemoglobin level, lower body mass index, younger age, higher baseline CD4(+) cell count, and female sex were associated with greater increases in eGFR over baseline, with small but statistically significant differences between regimens (P < .001 for all). CONCLUSIONS Despite screening, mild-to-moderate baseline renal impairment was relatively common, but these participants had greatest increases in eGFR after starting ART. Severe eGFR impairment was infrequent regardless of ART regimen and was generally related to intercurrent disease. Differences between ART regimens with respect to changes in eGFR through 96 weeks were of marginal clinical relevance, but investigating longer-term nephrotoxicity remains important.


Clinical Infectious Diseases | 2012

Predictors of first recurrence of Clostridium difficile infection: implications for initial management.

David W. Eyre; A. Sarah Walker; David H. Wyllie; Kate E. Dingle; David Griffiths; John Finney; Lily O'Connor; Alison Vaughan; Derrick W. Crook; Mark H. Wilcox; Tim Peto

Symptomatic recurrence of Clostridium difficile infection (CDI) occurs in approximately 20% of patients and is challenging to treat. Identifying those at high risk could allow targeted initial management and improve outcomes. Adult toxin enzyme immunoassay–positive CDI cases in a population of approximately 600 000 persons from September 2006 through December 2010 were combined with epidemiological/clinical data. The cumulative incidence of recurrence ≥14 days after the diagnosis and/or onset of first-ever CDI was estimated, treating death without recurrence as a competing risk, and predictors were identified from cause-specific proportional hazards regression models. A total of 1678 adults alive 14 days after their first CDI were included; median age was 77 years, and 1191 (78%) were inpatients. Of these, 363 (22%) experienced a recurrence ≥14 days after their first CDI, and 594 (35%) died without recurrence through March 2011. Recurrence risk was independently and significantly higher among patients admitted as emergencies, with previous gastrointestinal ward admission(s), last discharged 4–12 weeks before first diagnosis, and with CDI diagnosed at admission. Recurrence risk also increased with increasing age, previous total hours admitted, and C-reactive protein level at first CDI (all P < .05). The 4-month recurrence risk increased by approximately 5% (absolute) for every 1-point increase in a risk score based on these factors. Risk factors, including increasing age, initial disease severity, and hospital exposure, predict CDI recurrence and identify patients likely to benefit from enhanced initial CDI treatment.


PLOS ONE | 2011

Clinical Clostridium difficile: Clonality and Pathogenicity Locus Diversity

Kate E. Dingle; David Griffiths; Xavier Didelot; Jessica Evans; Alison Vaughan; Melina Kachrimanidou; Nicole Stoesser; Keith A. Jolley; Tanya Golubchik; Rosalind M. Harding; Tim Peto; Warren N. Fawley; A. Sarah Walker; Mark H. Wilcox; Derrick W. Crook

Clostridium difficile infection (CDI) is an important cause of mortality and morbidity in healthcare settings. The major virulence determinants are large clostridial toxins, toxin A (tcdA) and toxin B (tcdB), encoded within the pathogenicity locus (PaLoc). Isolates vary in pathogenicity from hypervirulent PCR-ribotypes 027 and 078 with high mortality, to benign non-toxigenic strains carried asymptomatically. The relative pathogenicity of most toxigenic genotypes is still unclear, but may be influenced by PaLoc genetic variant. This is the largest study of C. difficile molecular epidemiology performed to date, in which a representative collection of recent isolates (n = 1290) from patients with CDI in Oxfordshire, UK, was genotyped by multilocus sequence typing. The population structure was described using NeighborNet and ClonalFrame. Sequence variation within toxin B (tcdB) and its negative regulator (tcdC), was mapped onto the population structure. The 69 Sequence Types (ST) showed evidence for homologous recombination with an effect on genetic diversification four times lower than mutation. Five previously recognised genetic groups or clades persisted, designated 1 to 5, each having a strikingly congruent association with tcdB and tcdC variants. Hypervirulent ST-11 (078) was the only member of clade 5, which was divergent from the other four clades within the MLST loci. However, it was closely related to the other clades within the tcdB and tcdC loci. ST-11 (078) may represent a divergent formerly non-toxigenic strain that acquired the PaLoc (at least) by genetic recombination. This study focused on human clinical isolates collected from a single geographic location, to achieve a uniquely high density of sampling. It sets a baseline of MLST data for future comparative studies investigating genotype virulence potential (using clinical severity data for these isolates), possible reservoirs of human CDI, and the evolutionary origins of hypervirulent strains.

Collaboration


Dive into the A. Sarah Walker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim Peto

University of Oxford

View shared research outputs
Top Co-Authors

Avatar

Diana M. Gibb

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Llewelyn

Brighton and Sussex Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge