Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos F. Ibáñez is active.

Publication


Featured researches published by Carlos F. Ibáñez.


Neuron | 1991

Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary.

Finn Hallböök; Carlos F. Ibáñez; Håkan Persson

Evolutionary conservation of members of the NGF family in vertebrates was studied by DNA sequence analysis of PCR fragments for NGF, BDNF, and NT-3 from human, rat, chicken, viper, Xenopus, salmon, and ray. The results showed that the three factors are highly conserved from fishes to mammals. Phylogenetic trees reflecting the evolution and speciation of the members of the NGF family were constructed. In addition, the gene for a fourth member of the family, neurotrophin-4 (NT-4), was isolated from Xenopus and viper. The NT-4 gene encodes a precursor protein of 236 amino acids, which is processed into a 123 amino acid mature NT-4 protein with 50%-60% amino acid identity to NGF, BDNF, and NT-3. The NT-4 protein was shown to interact with the low affinity NGF receptor and elicited neurite outgrowth from explanted dorsal root ganglia with no and lower activity in sympathetic and nodose ganglia, respectively. Northern blot analysis of different tissues from Xenopus showed NT-4 mRNA only in ovary, where it was present at levels over 100-fold higher than those of NGF mRNA in heart.


Cell | 2003

The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands.

Gustavo Paratcha; Fernanda Ledda; Carlos F. Ibáñez

Intercellular communication involves either direct cell-cell contact or release and uptake of diffusible signals, two strategies mediated by distinct and largely nonoverlapping sets of molecules. Here, we show that the neural cell adhesion molecule NCAM can function as a signaling receptor for members of the GDNF ligand family. Association of NCAM with GFRalpha1, a GPI-anchored receptor for GDNF, downregulates NCAM-mediated cell adhesion and promotes high-affinity binding of GDNF to p140(NCAM), resulting in rapid activation of cytoplasmic protein tyrosine kinases Fyn and FAK in cells lacking RET, a known GDNF signaling receptor. GDNF stimulates Schwann cell migration and axonal growth in hippocampal and cortical neurons via binding to NCAM and activation of Fyn, but independently of RET. These results uncover an unexpected intersection between short- and long-range mechanisms of intercellular communication and reveal a pathway for GDNF signaling that does not require the RET receptor.


Neuron | 1995

GDNF prevents degeneration and promotes the phenotype of brain noradrenergic neurons in vivo

Ernest Arenas; Miles Trupp; Peter Åkerud; Carlos F. Ibáñez

The locus coeruleus (LC), the main noradrenergic center in the brain, participates in many neural functions, as diverse as memory and motor output, and is severely affected in several neurodegenerative disorders of the CNS. GDNF, a neurotrophic factor initially identified as dopaminotrophic, was found to be expressed in several targets of central noradrenergic neurons in the adult rat brain. Grafting of genetically engineered fibroblasts expressing high levels of GDNF prevented > 80% of the 6-hydroxydopamine-induced degeneration of noradrenergic neurons in the LC in vivo. Moreover, GDNF induced a fasciculated sprouting and increased by 2.5-fold both tyrosine hydroxylase levels and the soma size of lesioned LC neurons. These findings reveal a novel and potent neurotrophic activity of GDNF that may have therapeutic applications in neurodegenerative disorders affecting central noradrenergic neurons, such as Alzheimers, Parkinsons, and Huntingtons diseases.


Cell | 1992

Disruption of the low affinity receptor-binding site in NGF allows neuronal survival and differentiation by binding to the trk gene product

Carlos F. Ibáñez; Ted Ebendal; Gisela Barbany; Judith Murray-Rust; Tom L. Blundell; Håkan Persson

Nerve growth factor (NGF), like many other growth factors and hormones, binds to two different receptor molecules on responsive cells. The product of the proto-oncogene trk, p140trk, is a tyrosine kinase receptor that has been identified as a signal-transducing receptor for NGF, while the role of the low affinity NGF receptor, p75NGFR, in signal transduction is less clear. The crystal structure of NGF has recently been determined, although structures involved in receptor binding and biological activity are unknown. Here we show that Lys-32, Lys-34, and Lys-95 form a positively charged interface involved in binding to p75NGFR. Simultaneous modification of Lys-32 with either of the two other lysines resulted in loss of binding to p75NGFR. Despite the lack of binding to p75NGFR, these mutants retained binding to p140trk and biological activity, demonstrating a functional dissociation between the two NGF receptors.


The EMBO Journal | 1997

NMR structure of the death domain of the p75 neurotrophin receptor

Edvards Liepinsh; Leopold L. Ilag; Gottfried Otting; Carlos F. Ibáñez

The intracellular domain of the p75 neurotrophin receptor (p75ICD) lacks catalytic activity but contains a motif similar to death domains found in the cytoplasmic regions of members of the tumor necrosis factor receptor family and their downstream targets. Although some aspects of the signaling pathways downstream of p75 have been elucidated recently, mechanisms of receptor activation and proximal signaling events are unknown. Here we report the nuclear magnetic resonance (NMR) structure of the 145 residue long p75ICD. The death domain of p75ICD consists of two perpendicular sets of three helices packed into a globular structure. The polypeptide segment connecting the transmembrane and death domains as well as the serine/threonine‐rich C‐terminal end are highly flexible in p75ICD. Unlike the death domains involved in signaling by the TNF receptor and Fas, p75ICD does not self‐associate in solution. A surface area devoid of charged residues in the p75ICD death domain may indicate a potential site of interaction with downstream targets.


Journal of Cell Biology | 2003

Cross-talk between the Notch and TGF-β signaling pathways mediated by interaction of the Notch intracellular domain with Smad3

Andries Blokzijl; Camilla Dahlqvist; Eva Reissmann; Annalena Moliner; Urban Lendahl; Carlos F. Ibáñez

The Notch and transforming growth factor-β (TGF-β) signaling pathways play critical roles in the control of cell fate during metazoan development. However, mechanisms of cross-talk and signal integration between the two systems are unknown. Here, we demonstrate a functional synergism between Notch and TGF-β signaling in the regulation of Hes-1, a direct target of the Notch pathway. Activation of TGF-β signaling up-regulated Hes-1 expression in vitro and in vivo. This effect was abrogated in myogenic cells by a dominant-negative form of CSL, an essential DNA-binding component of the Notch pathway. TGF-β regulated transcription from the Hes-1 promoter in a Notch-dependent manner, and the intracellular domain of Notch1 (NICD) cooperated synergistically with Smad3, an intracellular transducer of TGF-β signals, to induce the activation of synthetic promoters containing multimerized CSL- or Smad3-binding sites. NICD and Smad3 were shown to interact directly, both in vitro and in cells, in a ligand-dependent manner, and Smad3 could be recruited to CSL-binding sites on DNA in the presence of CSL and NICD. These findings indicate that Notch and TGF-β signals are integrated by direct protein–protein interactions between the signal-transducing intracellular elements from both pathways.


Development | 2003

BDNF regulates spontaneous correlated activity at early developmental stages by increasing synaptogenesis and expression of the K+/Cl- co-transporter KCC2

Fernando Aguado; Maria A. Carmona; Esther Pozas; Agustín Aguiló; Francisco José Martínez-Guijarro; Soledad Alcántara; Víctor Borrell; Rafael Yuste; Carlos F. Ibáñez; Eduardo Soriano

Spontaneous neural activity is a basic property of the developing brain, which regulates key developmental processes, including migration, neural differentiation and formation and refinement of connections. The mechanisms regulating spontaneous activity are not known. By using transgenic embryos that overexpress BDNF under the control of the nestin promoter, we show here that BDNF controls the emergence and robustness of spontaneous activity in embryonic hippocampal slices. Further, BDNF dramatically increases spontaneous co-active network activity, which is believed to synchronize gene expression and synaptogenesis in vast numbers of neurons. In fact, BDNF raises the spontaneous activity of E18 hippocampal neurons to levels that are typical of postnatal slices. We also show that BDNF overexpression increases the number of synapses at much earlier stages (E18) than those reported previously. Most of these synapses were GABAergic, and GABAergic interneurons showed hypertrophy and a 3-fold increase in GAD expression. Interestingly, whereas BDNF does not alter the expression of GABA and glutamate ionotropic receptors, it does raise the expression of the recently cloned K+/Cl- KCC2 co-transporter, which is responsible for the conversion of GABA responses from depolarizing to inhibitory, through the control of the Cl- potential. Together, results indicate that both the presynaptic and postsynaptic machineries of GABAergic circuits may be essential targets of BDNF actions to control spontaneous activity. The data indicate that BDNF is a potent regulator of spontaneous activity and co-active networks, which is a new level of regulation of neurotrophins. Given that BDNF itself is regulated by neuronal activity, we suggest that BDNF acts as a homeostatic factor controlling the emergence, complexity and networking properties of spontaneous networks.


Journal of Biological Chemistry | 2000

Signaling Complexes and Protein-Protein Interactions Involved in the Activation of the Ras and Phosphatidylinositol 3-Kinase Pathways by the c-Ret Receptor Tyrosine Kinase

Valerie Besset; Rizaldy P. Scott; Carlos F. Ibáñez

Proximal signaling events and protein-protein interactions initiated after activation of the c-Ret receptor tyrosine kinase by its ligand, glial cell line-derived neurotrophic factor (GDNF), were investigated in cells carrying native and mutated forms of this receptor. Mutation of Tyr-1062 (Y1062F) in the cytoplasmic tail of c-Ret abolished receptor binding and phosphorylation of the adaptor Shc and eliminated activation of Ras by GDNF. Phosphorylation of Erk kinases was also greatly attenuated but not eliminated by this mutation. This residual wave of Erk phosphorylation was independent of the kinase activity of c-Ret. Mutation of Tyr-1096 (Y1096F), a binding site for the adaptor Grb2, had no effect on Erk activation by GDNF. Activation of phosphatidylinositol-3 kinase (PI3K) and its downstream effector Akt was also reduced in the Y1062F mutant but not completely abolished unless Tyr-1096 was also mutated. Ligand stimulation of neuronal cells induced the assembly of a large protein complex containing c-Ret, Grb2, and tyrosine-phosphorylated forms of Shc, p85PI3K, the adaptor Gab2, and the protein-tyrosine phosphatase SHP-2. In agreement with Ras-independent activation of PI3K by GDNF in neuronal cells, survival of sympathetic neurons induced by GDNF was dependent on PI3K but was not affected by microinjection of blocking anti-Ras antibodies, which did compromise neuronal survival by nerve growth factor, suggesting that Ras is not required for GDNF-induced survival of sympathetic neurons. These results indicate that upon ligand stimulation, at least two distinct protein complexes assemble on phosphorylated Tyr-1062 of c-Ret via Shc, one leading to activation of the Ras/Erk pathway through recruitment of Grb2/Sos and another to the PI3K/Akt pathway through recruitment of Grb2/Gab2 followed by p85PI3K and SHP-2. This latter complex can also assemble directly onto phosphorylated Tyr-1096, offering an alternative route to PI3K activation by GDNF.


Nature | 2008

Histone H2AX-dependent GABA A receptor regulation of stem cell proliferation

Michael Andäng; Jens Hjerling-Leffler; Annalena Moliner; T. Kalle Lundgren; Gonçalo Castelo-Branco; Ester Pozas; Vitezslav Bryja; Sophie Halliez; Hiroshi Nishimaru; Johannes Wilbertz; Ernest Arenas; Martin Koltzenburg; Patrick Charnay; Abdeljabbar El Manira; Carlos F. Ibáñez; Patrik Ernfors

Stem cell self-renewal implies proliferation under continued maintenance of multipotency. Small changes in numbers of stem cells may lead to large differences in differentiated cell numbers, resulting in significant physiological consequences. Proliferation is typically regulated in the G1 phase, which is associated with differentiation and cell cycle arrest. However, embryonic stem (ES) cells may lack a G1 checkpoint. Regulation of proliferation in the ‘DNA damage’ S/G2 cell cycle checkpoint pathway is known for its role in the maintenance of chromatin structural integrity. Here we show that autocrine/paracrine γ-aminobutyric acid (GABA) signalling by means of GABAA receptors negatively controls ES cell and peripheral neural crest stem (NCS) cell proliferation, preimplantation embryonic growth and proliferation in the boundary-cap stem cell niche, resulting in an attenuation of neuronal progenies from this stem cell niche. Activation of GABAA receptors leads to hyperpolarization, increased cell volume and accumulation of stem cells in S phase, thereby causing a rapid decrease in cell proliferation. GABAA receptors signal through S-phase checkpoint kinases of the phosphatidylinositol-3-OH kinase-related kinase family and the histone variant H2AX. This signalling pathway critically regulates proliferation independently of differentiation, apoptosis and overt damage to DNA. These results indicate the presence of a fundamentally different mechanism of proliferation control in these stem cells, in comparison with most somatic cells, involving proteins in the DNA damage checkpoint pathway.


Experimental Neurology | 1993

Differential Actions of Neurotrophins in the Locus Coeruleus and Basal Forebrain

W.J. Friedman; Carlos F. Ibáñez; Finn Hallböök; Håkan Persson; L.D. Cain; C.F. Dreyfus; I.B. Black

The neurotrophin gene family, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and NT-4/NT-5, supports the survival of distinct peripheral neurons, however, actions upon central neurons are relatively undefined. In this study we have compared different neurotrophins in the regulation of neuronal survival and function using dissociated embryonic cell cultures from two brain regions, the basal forebrain (BF) and locus coeruleus (LC). In the BF, NGF increased choline acetyl transferase (ChAT) activity, but did not influence cholinergic cell survival. In contrast to NGF, BDNF, NT-3, and the novel neurotrophin, NT-4, all increased ChAT activity and cholinergic cell survival. We also examined embryonic LC neurons in culture. LC neurons are unresponsive to NGF. In contrast, NT-3 and NT-4 elicited significant increases in survival of noradrenergic LC neurons, the first demonstration of trophic effects in this critical brain region. Identification of factors supporting coeruleal and basal forebrain neuronal survival may provide insight into mechanisms mediating degeneration of these disparate structures in clinical disorders.

Collaboration


Dive into the Carlos F. Ibáñez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gustavo Paratcha

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge