Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrik Ernfors is active.

Publication


Featured researches published by Patrik Ernfors.


Neuron | 1990

Identification of cells in rat brain and peripheral tissues expressing mRNA for members of the nerve growth factor family

Patrik Ernfors; Cynthia Wetmore; Lars Olson; Håkan Persson

Cells expressing mRNA for hippocampus-derived neurotrophic factor (HDNF/NT-3) or brain-derived neurotrophic factor (BDNF) were identified by in situ hybridization. In the rat brain, HDNF mRNA was predominantly found in pyramidal neurons in CA1 and CA2 of the hippocampus. Lower levels of HDNF mRNA were found in granular neurons of the dentate gyrus and in neurons of the taenia tecta and induseum griseum. BDNF mRNA-expressing cells were more widely distributed in the rat brain, with high levels in neurons of CA2, CA3, and the hilar region of the dentate gyrus, in the external and internal pyramidal layers of the cerebral cortex, in the claustrum, and in one brainstem structure. Lower levels were seen in CA1 and in the granular layer of the hippocampus, in the taenia tecta, and in the mammillary complex. In peripheral tissues, HDNF mRNA was found in glomerular cells in the kidney, secretory cells in the male rat submandibular gland, and epithelial cells in secondary and tertiary follicles in the ovary. Cells expressing BDNF mRNA were found in the dorsal root ganglia, where neurons of various sizes were labeled.


Cell | 1994

Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents

Patrik Ernfors; Kuo-Fen Lee; Jan Kucera; Rudolf Jaenisch

Neurotrophin-3-deficient (NT-3-deficient) mice were generated by gene targeting. Mutant mice displayed severe movement defects of the limbs, and most died shortly after birth. Substantial portions of peripheral sensory and sympathetic neurons were lost while motor neurons were not affected. Significantly, spinal proprioceptive afferents and their peripheral sense organs (muscle spindles and Golgi tendon organs) were completely absent in homozygous mutant mice. This correlated with a loss of parvalbumin and carbonic anhydrase-positive neurons in the dorsal root ganglion. No gross abnormalities were seen in Pacinian corpuscles, cutaneous afferents containing substance P and calcitonin gene-related peptide, and deep nerve fibers in the joint capsule and tendon. Importantly, the number of muscle spindles in heterozygous mutant mice was half of that in control mice, indicating that NT-3 is present at limiting concentrations in the embryo.


The Journal of Neuroscience | 2005

Brain-Derived Neurotrophic Factor and Antidepressant Drugs Have Different But Coordinated Effects on Neuronal Turnover, Proliferation, and Survival in the Adult Dentate Gyrus

Mikko Sairanen; Guilherme Lucas; Patrik Ernfors; Maija L. Castrén; Eero Castrén

Antidepressants increase proliferation of neuronal progenitor cells and expression of brain-derived neurotrophic factor (BDNF) in the hippocampus. We investigated the role of BDNF signaling in antidepressant-induced neurogenesis by using transgenic mice with either reduced BDNF levels (BDNF+/-) or impaired trkB activation (trkB.T1-overexpressing mice). In both transgenic strains, chronic (21 d) imipramine treatment increased the number of bromodeoxyuridine (BrdU)-positive cells to degree similar to that seen in wild-type mice 24 h after BrdU administration, although the basal proliferation rate was increased in both transgenic strains. Three weeks after BrdU administration and the last antidepressant injection, the amount of newborn (BrdU- or TUC-4-positive) cells was significantly reduced in both BDNF+/- and trkB.T1-overexpressing mice, which suggests that normal BDNF signaling is required for the long-term survival of newborn hippocampal neurons. Moreover, the antidepressant-induced increase in the surviving BrdU-positive neurons seen in wild-type mice 3 weeks after treatment was essentially lost in mice with reduced BDNF signaling. Furthermore, we observed that chronic treatment with imipramine or fluoxetine produced a temporally similar increase in both BrdU-positive and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end-labeled neurons in the dentate gyrus, indicating that these drugs simultaneously increase both neurogenesis and neuronal elimination. These data suggest that antidepressants increase turnover of hippocampal neurons rather than neurogenesis per se and that BDNF signaling is required for the long-term survival of newborn neurons in mouse hippocampus.


Neuron | 1991

Increased levels of messenger RNAs for neurotrophic factors in the brain during kindling epileptogenesis

Patrik Ernfors; Johan Bengzon; Zaal Kokaia; Håkan Persson; Olle Lindvall

Kindling, induced by repeated subconvulsive electrical or chemical stimulations leads to progressive and permanent amplification of seizure activity, culminating in generalized seizures. We report that kindling induced by electrical stimulation in the ventral hippocampus leads to a marked and transient increase in mRNA for NGF and BDNF in the dentate gyrus, the parietal cortex, and the piriform cortex. BDNF mRNA increased also in the pyramidal layer of hippocampus and in the amygdaloid complex. No change was seen in the level of HDNF/NT-3 mRNA. The increased expression of NGF and BDNF mRNAs was not influenced by pretreatment with the NMDA receptor antagonist MK801, but was partially blocked by the quisqualate, AMPA receptor antagonist NBQX. The presumed subsequent increase of the trophic factors themselves may be important for kindling-associated plasticity in specific neuronal systems in the hippocampus, which could promote hyperexcitability and contribute to the development of epileptic syndromes.


The Journal of Neuroscience | 2003

Activation of the TrkB Neurotrophin Receptor Is Induced by Antidepressant Drugs and Is Required for Antidepressant-Induced Behavioral Effects

Tommi Saarelainen; Panu Hendolin; Guilherme Lucas; Eija Koponen; Mikko Sairanen; Ewen N. MacDonald; Karin Agerman; Annakaisa Haapasalo; Hiroyuki Nawa; Raquel Aloyz; Patrik Ernfors; Eero Castrén

Recent studies have indicated that exogenously administered neurotrophins produce antidepressant-like behavioral effects. We have here investigated the role of endogenous brain-derived neurotrophic factor (BDNF) and its receptor trkB in the mechanism of action of antidepressant drugs. We found that trkB.T1-overexpressing transgenic mice, which show reduced trkB activation in brain, as well as heterozygous BDNF null (BDNF+/−) mice, were resistant to the effects of antidepressants in the forced swim test, indicating that normal trkB signaling is required for the behavioral effects typically produced by antidepressants. In contrast, neurotrophin-3+/− mice showed a normal behavioral response to antidepressants. Furthermore, acute as well as chronic antidepressant treatment induced autophosphorylation and activation of trkB in cerebral cortex, particularly in the prefrontal and anterior cingulate cortex and hippocampus. Tyrosines in the trkB autophosphorylation site were phosphorylated in response to antidepressants, but phosphorylation of the shc binding site was not observed. Nevertheless, phosphorylation of cAMP response element-binding protein was increased by antidepressants in the prefrontal cortex concomitantly with trkB phosphorylation and this response was reduced in trkB.T1-overexpressing mice. Our data suggest that antidepressants acutely increase trkB signaling in a BDNF-dependent manner in cerebral cortex and that this signaling is required for the behavioral effects typical of antidepressant drugs. Neurotrophin signaling increased by antidepressants may induce formation and stabilization of synaptic connectivity, which gradually leads to the clinical antidepressive effects and mood recovery.


Neuroscience | 1992

Molecular cloning of rat trkC and distribution of cells expressing messenger RNAs for members of the trk family in the rat central nervous system

Jean-Philippe Merlio; Patrik Ernfors; M. Jaber; Håkan Persson

Tyrosine protein kinases trk, trkB and trkC are signal-transducing receptors for the neurotrophins nerve growth factor, brain-derived nerve growth factor, neurotrophin-3 and neurotrophin-4. Here we report on the isolation of cDNA fragments encoding a part of rat trk and trkB proteins, respectively, and characterization of a full-length cDNA clone encoding rat trkC. Cells expressing mRNAs for the different members of the trk family were identified in the rat central nervous system by in situ hybridization using oligonucleotide probes designed from the isolated cDNA sequences and complementary to mRNA sequences coding for the extracellular region of the receptors. The expression of trk mRNA was found to be restricted to neurons of the basal forebrain, caudate-putamen with features of cholinergic cells and to magnocellular neurons of several brainstem nuclei. In contrast, cells expressing trkB and trkC mRNAs were widely distributed in the brain. Areas expressing high levels of trkB or trkC mRNAs included olfactory formations, neocortex, hippocampus, thalamic and hypothalamic nuclei, brainstem nuclei, cerebellum and spinal cord motoneurons. A similar distribution for trkB and trkC mRNAs was shown in most areas but each probe specific for these mRNAs also provided distinct labeling patterns in different subregions, layers and cells. Comparison between our data and previous analyses of cells expressing mRNAs for neurotrophins and the low-affinity nerve growth factor receptor suggests that different modes of action and different combinations of receptors mediate biological responses to neurotrophins in the adult rat brain.


European Journal of Neuroscience | 1992

Cells Expressing mRNA for Neurotrophins and their Receptors During Embryonic Rat Development.

Patrik Ernfors; Jean‐Phillipe Merlio; Håkan Persson

In situ hybridization analysis of cells expressing messenger RNAs (mRNAs) for the neurotrophins nerve growth factor (NGF), brain‐derived neurotrophic factor (BDNF) and neurotrophin‐3 (NT‐3) and their high‐affinity receptors (trk, trkB and trkC) in the rat embryo revealed a complex but specific expression pattern for each of these mRNAs. For all mRNAs a developmentally regulated expression was seen in many different tissues. BDNF and NT‐3 mRNAs were expressed in the sensory epithelia of the cochlea and vestibule macula of the sacculus and utricle, and both trkB and trkC mRNA were expressed in the spiral and vestibule ganglia innervating these sensory structures. NGF and NT‐3 mRNA were found in the iris, innervated by the sympathetic neurons of the superior cervical ganglion and sensory neurons from the trigeminal ganglion, which expressed both trk and trkC mRNAs. Both NGF and NT‐3 mRNAs were also expressed in other target fields of the trigeminal ganglion, the epithelium of the whisker follicles (NT‐3 mRNA) and in the epithelium of the nose, tongue and jaw. NT‐3 mRNA was found in the cerebellar external granule layer and trkC mRNA in the Purkinje layer of the cerebellar primordia. These sites of synthesis are consistent with a target‐derived neurotrophic interaction for NGF, BDNF and NT‐3. However, in some cases mRNAs for both the neurotrophins and their high‐affinity receptors were detected in the same tissue, including the dorsal root, geniculate, superior, jugular, petrose and nodose ganglia, as well as in the hippocampus, frontal cortical plate and pineal recess, implying a local mode of action. Combined, these data suggest a broad function for the neurotrophins and their receptors in supporting neural innervation during embryonic development. The results also identify several novel neuronal systems that are likely to depend on the neurotrophins in vivo.


Neuron | 1995

Complementary roles of BDNF and NT-3 in vestibular and auditory development

Patrik Ernfors; Thomas R. Van De Water; Janet Loring; Rudolf Jaenisch

The physiological role of BDNF and NT-3 in the development of the vestibular and auditory systems was investigated in mice that carry a deleted BDNF and/or NT-3 gene. BDNF was the major survival factor for vestibular ganglion neurons, and NT-3, for spiral ganglion neurons. Lack of BDNF and NT-3 did not affect ingrowth of nerve fibers into the vestibular epithelium, but BDNF mutants failed to maintain afferent and efferent innervation. In the cochlea, BDNF mutants lost type 2 spiral neurons, causing an absence of outer hair cell innervation. NT-3 mutants showed a paucity of afferents and lost 87% of spiral neurons, presumably corresponding to type 1 neurons, which innervate inner hair cells. Double mutants had an additive loss, lacking all vestibular and spiral neurons. These results show that BDNF and NT-3 are crucial for inner ear development and, although largely coexpressed, have distinct and nonoverlapping roles in the vestibular and auditory systems.


Nature Neuroscience | 2015

Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing

Dmitry Usoskin; Alessandro Furlan; Saiful Islam; Hind Abdo; Peter Lönnerberg; Daohua Lou; Jens Hjerling-Leffler; Jesper Z. Haeggström; Olga Kharchenko; Peter V. Kharchenko; Sten Linnarsson; Patrik Ernfors

The primary sensory system requires the integrated function of multiple cell types, although its full complexity remains unclear. We used comprehensive transcriptome analysis of 622 single mouse neurons to classify them in an unbiased manner, independent of any a priori knowledge of sensory subtypes. Our results reveal eleven types: three distinct low-threshold mechanoreceptive neurons, two proprioceptive, and six principal types of thermosensitive, itch sensitive, type C low-threshold mechanosensitive and nociceptive neurons with markedly different molecular and operational properties. Confirming previously anticipated major neuronal types, our results also classify and provide markers for new, functionally distinct subtypes. For example, our results suggest that itching during inflammatory skin diseases such as atopic dermatitis is linked to a distinct itch-generating type. We demonstrate single-cell RNA-seq as an effective strategy for dissecting sensory responsive cells into distinct neuronal types. The resulting catalog illustrates the diversity of sensory types and the cellular complexity underlying somatic sensation.


European Journal of Neuroscience | 1997

Learning Deficit in BDNF Mutant Mice

Sten Linnarsson; Anders Björklund; Patrik Ernfors

Brain‐derived neurotrophic factor (BDNF) has been implicated in the regulation of high‐frequency synaptic transmission and long‐term potentiation in the hippocampus, processes that are also thought to be involved in the learning of spatial tasks such as the Morris water maze. In order to determine whether BDNF is required for normal spatial learning, mice carrying a deletion in one copy of the BDNF gene were subjected to the Morris water maze task. Young adult BDNF mutant mice were significantly impaired compared with wild‐type mice, requiring twice the number of days to reach full performance. Aged wild‐type mice performed significantly worse than young wild‐type mice and the effect was even more pronounced in the BDNF mutant mice, which did not learn at all. Although there was no difference in mean swimming speed between BDNF mutant and wild‐type mice, we cannot exclude the possibility that developmental or peripheral deficits also contribute to the learning deficits in these mice. In situ hybridization and RNase protection analysis revealed that BDNF mRNA expression was indeed decreased in BDNF mutant mice. Furthermore, a pronounced effect of age on BDNF mRNA expression was seen, displayed as both a reduced level of mRNA expression and a reduced or entirely absent layer‐specific expression pattern in the cerebral cortex of aged animals. Thus, our data suggest that BDNF expression may be linked to learning.

Collaboration


Dive into the Patrik Ernfors's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rudolf Jaenisch

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge