Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos L. Araya is active.

Publication


Featured researches published by Carlos L. Araya.


Nature Methods | 2010

High Resolution Mapping of Protein Sequence–Function Relationships

Douglas M. Fowler; Carlos L. Araya; Sarel J. Fleishman; Elizabeth H. Kellogg; Jason J. Stephany; David Baker; Stanley Fields

We present a large-scale approach to investigate the functional consequences of sequence variation in a protein. The approach entails the display of hundreds of thousands of protein variants, moderate selection for activity and high-throughput DNA sequencing to quantify the performance of each variant. Using this strategy, we tracked the performance of >600,000 variants of a human WW domain after three and six rounds of selection by phage display for binding to its peptide ligand. Binding properties of these variants defined a high-resolution map of mutational preference across the WW domain; each position had unique features that could not be captured by a few representative mutations. Our approach could be applied to many in vitro or in vivo protein assays, providing a general means for understanding how protein function relates to sequence.


Nature | 2014

Comparative analysis of regulatory information and circuits across distant species

Alan P. Boyle; Carlos L. Araya; Cathleen M. Brdlik; Philip Cayting; Chao Cheng; Yong Cheng; Kathryn E. Gardner; LaDeana W. Hillier; J. Janette; Lixia Jiang; Dionna M. Kasper; Trupti Kawli; Pouya Kheradpour; Anshul Kundaje; Jingyi Jessica Li; Lijia Ma; Wei Niu; E. Jay Rehm; Joel Rozowsky; Matthew Slattery; Rebecca Spokony; Robert Terrell; Dionne Vafeados; Daifeng Wang; Peter Weisdepp; Yi-Chieh Wu; Dan Xie; Koon Kiu Yan; Elise A. Feingold; Peter J. Good

Despite the large evolutionary distances between metazoan species, they can show remarkable commonalities in their biology, and this has helped to establish fly and worm as model organisms for human biology. Although studies of individual elements and factors have explored similarities in gene regulation, a large-scale comparative analysis of basic principles of transcriptional regulatory features is lacking. Here we map the genome-wide binding locations of 165 human, 93 worm and 52 fly transcription regulatory factors, generating a total of 1,019 data sets from diverse cell types, developmental stages, or conditions in the three species, of which 498 (48.9%) are presented here for the first time. We find that structural properties of regulatory networks are remarkably conserved and that orthologous regulatory factor families recognize similar binding motifs in vivo and show some similar co-associations. Our results suggest that gene-regulatory properties previously observed for individual factors are general principles of metazoan regulation that are remarkably well-preserved despite extensive functional divergence of individual network connections. The comparative maps of regulatory circuitry provided here will drive an improved understanding of the regulatory underpinnings of model organism biology and how these relate to human biology, development and disease.


Trends in Biotechnology | 2011

Deep mutational scanning: assessing protein function on a massive scale

Carlos L. Araya; Douglas M. Fowler

Analysis of protein mutants is an effective means to understand their function. Protein display is an approach that allows large numbers of mutants of a protein to be selected based on their activity, but only a handful with maximal activity have been traditionally identified for subsequent functional analysis. However, the recent application of high-throughput sequencing (HTS) to protein display and selection has enabled simultaneous assessment of the function of hundreds of thousands of mutants that span the activity range from high to low. Such deep mutational scanning approaches are rapid and inexpensive with the potential for broad utility. In this review, we discuss the emergence of deep mutational scanning, the challenges associated with its use and some of its exciting applications.


Nature Biotechnology | 2014

Quantitative analysis of RNA-protein interactions on a massively parallel array reveals biophysical and evolutionary landscapes

Jason D. Buenrostro; Carlos L. Araya; Lauren M. Chircus; Curtis J. Layton; Howard Y. Chang; Michael Snyder; William J. Greenleaf

RNA-protein interactions drive fundamental biological processes and are targets for molecular engineering, yet quantitative and comprehensive understanding of the sequence determinants of affinity remains limited. Here we repurpose a high-throughput sequencing instrument to quantitatively measure binding and dissociation of a fluorescently labeled protein to >107 RNA targets generated on a flow cell surface by in situ transcription and intermolecular tethering of RNA to DNA. Studying the MS2 coat protein, we decompose the binding energy contributions from primary and secondary RNA structure, and observe that differences in affinity are often driven by sequence-specific changes in both association and dissociation rates. By analyzing the biophysical constraints and modeling mutational paths describing the molecular evolution of MS2 from low- to high-affinity hairpins, we quantify widespread molecular epistasis and a long-hypothesized, structure-dependent preference for G:U base pairs over C:A intermediates in evolutionary trajectories. Our results suggest that quantitative analysis of RNA on a massively parallel array (RNA-MaP) provides generalizable insight into the biophysical basis and evolutionary consequences of sequence-function relationships.


Proceedings of the National Academy of Sciences of the United States of America | 2012

A fundamental protein property, thermodynamic stability, revealed solely from large-scale measurements of protein function

Carlos L. Araya; Douglas M. Fowler; Wentao Chen; Ike Muniez; Jeffery W. Kelly; Stanley Fields

The ability of a protein to carry out a given function results from fundamental physicochemical properties that include the protein’s structure, mechanism of action, and thermodynamic stability. Traditional approaches to study these properties have typically required the direct measurement of the property of interest, oftentimes a laborious undertaking. Although protein properties can be probed by mutagenesis, this approach has been limited by its low throughput. Recent technological developments have enabled the rapid quantification of a protein’s function, such as binding to a ligand, for numerous variants of that protein. Here, we measure the ability of 47,000 variants of a WW domain to bind to a peptide ligand and use these functional measurements to identify stabilizing mutations without directly assaying stability. Our approach is rooted in the well-established concept that protein function is closely related to stability. Protein function is generally reduced by destabilizing mutations, but this decrease can be rescued by stabilizing mutations. Based on this observation, we introduce partner potentiation, a metric that uses this rescue ability to identify stabilizing mutations, and identify 15 candidate stabilizing mutations in the WW domain. We tested six candidates by thermal denaturation and found two highly stabilizing mutations, one more stabilizing than any previously known mutation. Thus, physicochemical properties such as stability are latent within these large-scale protein functional data and can be revealed by systematic analysis. This approach should allow other protein properties to be discovered.


BMC Genomics | 2010

Whole-genome sequencing of a laboratory-evolved yeast strain

Carlos L. Araya; Celia Payen; Maitreya J. Dunham; Stanley Fields

BackgroundExperimental evolution of microbial populations provides a unique opportunity to study evolutionary adaptation in response to controlled selective pressures. However, until recently it has been difficult to identify the precise genetic changes underlying adaptation at a genome-wide scale. New DNA sequencing technologies now allow the genome of parental and evolved strains of microorganisms to be rapidly determined.ResultsWe sequenced >93.5% of the genome of a laboratory-evolved strain of the yeast Saccharomyces cerevisiae and its ancestor at >28× depth. Both single nucleotide polymorphisms and copy number amplifications were found, with specific gains over array-based methodologies previously used to analyze these genomes. Applying a segmentation algorithm to quantify structural changes, we determined the approximate genomic boundaries of a 5× gene amplification. These boundaries guided the recovery of breakpoint sequences, which provide insights into the nature of a complex genomic rearrangement.ConclusionsThis study suggests that whole-genome sequencing can provide a rapid approach to uncover the genetic basis of evolutionary adaptations, with further applications in the study of laboratory selections and mutagenesis screens. In addition, we show how single-end, short read sequencing data can provide detailed information about structural rearrangements, and generate predictions about the genomic features and processes that underlie genome plasticity.


Bioinformatics | 2011

Enrich: Software for Analysis of Protein Function by Enrichment and Depletion of Variants

Douglas M. Fowler; Carlos L. Araya; Wayne Gerard; Stanley Fields

Summary: Measuring the consequences of mutation in proteins is critical to understanding their function. These measurements are essential in such applications as protein engineering, drug development, protein design and genome sequence analysis. Recently, high-throughput sequencing has been coupled to assays of protein activity, enabling the analysis of large numbers of mutations in parallel. We present Enrich, a tool for analyzing such deep mutational scanning data. Enrich identifies all unique variants (mutants) of a protein in high-throughput sequencing datasets and can correct for sequencing errors using overlapping paired-end reads. Enrich uses the frequency of each variant before and after selection to calculate an enrichment ratio, which is used to estimate fitness. Enrich provides an interactive interface to guide users. It generates user-accessible output for downstream analyses as well as several visualizations of the effects of mutation on function, thereby allowing the user to rapidly quantify and comprehend sequence–function relationships. Availability and Implementation: Enrich is implemented in Python and is available under a FreeBSD license at http://depts.washington.edu/sfields/software/enrich/. Enrich includes detailed documentation as well as a small example dataset. Contact: [email protected]; [email protected] Supplementary Information: Supplementary data is available at Bioinformatics online.


BMC Bioinformatics | 2006

AceTree: a tool for visual analysis of Caenorhabditis elegans embryogenesis

Thomas J. Boyle; Zhirong Bao; John I. Murray; Carlos L. Araya; Robert H. Waterston

BackgroundThe invariant lineage of the nematode Caenorhabditis elegans has potential as a powerful tool for the description of mutant phenotypes and gene expression patterns. We previously described procedures for the imaging and automatic extraction of the cell lineage from C. elegans embryos. That method uses time-lapse confocal imaging of a strain expressing histone-GFP fusions and a software package, StarryNite, processes the thousands of images and produces output files that describe the location and lineage relationship of each nucleus at each time point.ResultsWe have developed a companion software package, AceTree, which links the images and the annotations using tree representations of the lineage. This facilitates curation and editing of the lineage. AceTree also contains powerful visualization and interpretive tools, such as space filling models and tree-based expression patterning, that can be used to extract biological significance from the data.ConclusionBy pairing a fast lineaging program written in C with a user interface program written in Java we have produced a powerful software suite for exploring embryonic development.


Nature | 2014

Regulatory analysis of the C. elegans genome with spatiotemporal resolution

Carlos L. Araya; Trupti Kawli; Anshul Kundaje; Lixia Jiang; Beijing Wu; Dionne Vafeados; Robert Terrell; Peter Weissdepp; Louis Gevirtzman; Daniel Mace; Wei Niu; Alan P. Boyle; Dan Xie; Lijia Ma; John I. Murray; Valerie Reinke; Robert H. Waterston; Michael Snyder

Discovering the structure and dynamics of transcriptional regulatory events in the genome with cellular and temporal resolution is crucial to understanding the regulatory underpinnings of development and disease. We determined the genomic distribution of binding sites for 92 transcription factors and regulatory proteins across multiple stages of Caenorhabditis elegans development by performing 241 ChIP-seq (chromatin immunoprecipitation followed by sequencing) experiments. Integration of regulatory binding and cellular-resolution expression data produced a spatiotemporally resolved metazoan transcription factor binding map. Using this map, we explore developmental regulatory circuits that encode combinatorial logic at the levels of co-binding and co-expression of transcription factors, characterizing the genomic coverage and clustering of regulatory binding, the binding preferences of, and biological processes regulated by, transcription factors, the global transcription factor co-associations and genomic subdomains that suggest shared patterns of regulation, and identifying key transcription factors and transcription factor co-associations for fate specification of individual lineages and cell types.


Genome Research | 2015

Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans

Can Cenik; Elif Sarinay Cenik; Gun W. Byeon; Fabian Grubert; Sophie I. Candille; Damek V. Spacek; Bilal Alsallakh; Hagen Tilgner; Carlos L. Araya; Hua Tang; Emiliano P. Ricci; Michael Snyder

Elucidating the consequences of genetic differences between humans is essential for understanding phenotypic diversity and personalized medicine. Although variation in RNA levels, transcription factor binding, and chromatin have been explored, little is known about global variation in translation and its genetic determinants. We used ribosome profiling, RNA sequencing, and mass spectrometry to perform an integrated analysis in lymphoblastoid cell lines from a diverse group of individuals. We find significant differences in RNA, translation, and protein levels suggesting diverse mechanisms of personalized gene expression control. Combined analysis of RNA expression and ribosome occupancy improves the identification of individual protein level differences. Finally, we identify genetic differences that specifically modulate ribosome occupancy--many of these differences lie close to start codons and upstream ORFs. Our results reveal a new level of gene expression variation among humans and indicate that genetic variants can cause changes in protein levels through effects on translation.

Collaboration


Dive into the Carlos L. Araya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stanley Fields

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge