Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos L. Arteaga is active.

Publication


Featured researches published by Carlos L. Arteaga.


Journal of Biological Chemistry | 2000

Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration.

Andrei V. Bakin; Anne K. Tomlinson; Neil A. Bhowmick; Harold L. Moses; Carlos L. Arteaga

We have studied the role of phosphatidylinositol 3-OH kinase (PI3K)-Akt signaling in transforming growth factor β (TGFβ)-mediated epithelial to mesenchymal transition (EMT). In NMuMG mammary epithelial cells, exogenous TGFβ1 induced phosphorylation of Akt at Ser-473 and Akt in vitro kinase activity against GSK-3β within 30 min. These responses were temporally correlated with delocalization of E-cadherin, ZO-1, and integrin β1 from cell junctions and the acquisition of spindle cell morphology. LY294002, an inhibitor of the p110 catalytic subunit of PI3K, and a dominant-negative mutant of Akt blocked the delocalization of ZO-1 induced by TGFβ1, whereas transfection of constitutively active p110 induced loss of ZO-1 from tight junctions. In addition, LY294002 blocked TGFβ-mediated C-terminal phosphorylation of Smad2. Consistent with these data, TGFβ-induced p3TP-Lux and p(CAGA)12-Lux reporter activities were inhibited by LY294002 and transiently expressed dominant-negative p85 and Akt mutants in NMuMG and 4T1 cells. Dominant-negative RhoA inhibited TGFβ-induced phosphorylation of Akt at Ser-473, whereas constitutively active RhoA increased the basal phosphorylation of Akt, suggesting that RhoA in involved in TGFβ-induced EMT. Finally, LY294002 and neutralizing TGFβ1 antibodies inhibited ligand-independent constitutively active Akt as well as basal and TGFβ-stimulated migration in 4T1 and EMT6 breast tumor cells. Taken together, these data suggest that PI3K-Akt signaling is required for TGFβ-induced transcriptional responses, EMT, and cell migration.


Nature Medicine | 2002

PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization.

Incheol Shin; F. Michael Yakes; Federico Rojo; Nah-Young Shin; Andrei V. Bakin; José Baselga; Carlos L. Arteaga

We have shown a novel mechanism of Akt-mediated regulation of the CDK inhibitor p27kip1. Blockade of HER2/neu in tumor cells inhibits Akt kinase activity and upregulates nuclear levels of the CDK inhibitor p27Kip1. Recombinant Akt and Akt precipitated from tumor cells phosphorylated wild-type p27 in vitro. p27 contains an Akt consensus RXRXXT157D within its nuclear localization motif. Active (myristoylated) Akt phosphorylated wild-type p27 in vivo but was unable to phosphorylate a T157A-p27 mutant. Wild-type p27 localized in the cytosol and nucleus, whereas T157A-p27 localized exclusively in the nucleus and was resistant to nuclear exclusion by Akt. T157A-p27 was more effective than wild-type p27 in inhibiting cyclin E/CDK2 activity and cell proliferation; these effects were not rescued by active Akt. Expression of Ser473 phospho Akt in primary human breast cancers statistically correlated with expression of p27 in tumor cytosol. These data indicate that Akt may contribute to tumor-cell proliferation by phosphorylation and cytosolic retention of p27, thus relieving CDK2 from p27-induced inhibition.


Journal of Clinical Oncology | 2005

Critical Update and Emerging Trends in Epidermal Growth Factor Receptor Targeting in Cancer

José Baselga; Carlos L. Arteaga

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase of the ErbB receptor family that is abnormally activated in many epithelial tumors. The aberrant activation of the EGFR leads to enhanced proliferation and other tumor-promoting activities, which provide a strong rationale to target this receptor family. There are two classes of anti-EGFR agents: monoclonal antibodies (MAbs) directed at the extracellular domain of the receptor and small molecule, adenosine triphosphate-competitive inhibitors of the receptors tyrosine kinase. Anti-EGFR MAbs have shown antitumor activity in advanced colorectal carcinoma, squamous cell carcinomas of the head and neck, non-small-cell lung cancer (NSCLC) and renal cell carcinomas. The tyrosine kinase inhibitors (TKIs) have a partially different activity profile. They are active against NSCLC, and a specific EGFR inhibitor has shown improvement in survival. Recently, mutations and amplifications of the EGFR gene have been identified in NSCLC and predict for enhanced sensitivity to anti-EGFR TKIs. In addition to specific anti-EGFR TKIs, there are broader acting inhibitors such as dual EGFR HER-2 inhibitors and combined anti-pan-ErbB and antivascular endothelial growth factor receptor inhibitors. Current research efforts are directed at selecting the optimal dose and schedule and identifying predictive factors of response and resistance beyond EGFR gene mutations and/or amplifications. Finally, there is a need for improved strategies to integrate anti-EGFR agents with conventional therapies and to explore combinations with other molecular targeted approaches including other antireceptor therapies, receptor-downstream signaling transduction inhibitors, and targeted approaches interfering with other essential drivers of cancer, such as angiogenesis.


Journal of Clinical Investigation | 2008

Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins

Marta Guix; Anthony C. Faber; Shizhen Emily Wang; Maria Graciela Olivares; Youngchul Song; Sherman Qu; Cammie Rinehart; Brenda Seidel; Douglas Yee; Carlos L. Arteaga; Jeffrey A. Engelman

Although some cancers are initially sensitive to EGFR tyrosine kinase inhibitors (TKIs), resistance invariably develops. We investigated mechanisms of acquired resistance to the EGFR TKI gefitinib by generating gefitinib-resistant (GR) A431 squamous cancer cells. In GR cells, gefitinib reduced phosphorylation of EGFR, ErbB-3, and Erk but not Akt. These cells also showed hyperphosphorylation of the IGFI receptor (IGFIR) and constitutive association of IRS-1 with PI3K. Inhibition of IGFIR signaling disrupted the association of IRS-1 with PI3K and restored the ability of gefitinib to downregulate PI3K/Akt signaling and to inhibit GR cell growth. Gene expression analyses revealed that GR cells exhibited markedly reduced IGF-binding protein 3 (IGFBP-3) and IGFBP-4 RNA. Addition of recombinant IGFBP-3 restored the ability of gefitinib to downregulate PI3K/Akt signaling and to inhibit cell growth. Finally, gefitinib treatment of mice with A431 xenografts in combination with an IGFIR-specific monoclonal antibody prevented tumor recurrence, whereas each drug given alone was unable to do so. These data suggest that loss of expression of IGFBPs in tumor cells treated with EGFR TKIs derepresses IGFIR signaling, which in turn mediates resistance to EGFR antagonists. Moreover, combined therapeutic inhibition of EGFR and IGFIR may abrogate this acquired mechanism of drug resistance and is thus worthy of prospective clinical investigation.


Journal of Clinical Investigation | 2002

Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases

Rebecca S. Muraoka; Nancy Dumont; Christoph A. Ritter; Teresa C. Dugger; Dana M. Brantley; Jin Chen; Evangeline Easterly; L. Renee Roebuck; Sarah Ryan; Philip Gotwals; Victor Koteliansky; Carlos L. Arteaga

TGF-βs are potent inhibitors of epithelial cell proliferation. However, in established carcinomas, autocrine/paracrine TGF-β interactions can enhance tumor cell viability and progression. Thus, we studied the effect of a soluble Fc:TGF-β type II receptor fusion protein (Fc:TβRII) on transgenic and transplantable models of breast cancer metastases. Systemic administration of Fc:TβRII did not alter primary mammary tumor latency in MMTV-Polyomavirus middle T antigen transgenic mice. However, Fc:TβRII increased apoptosis in primary tumors, while reducing tumor cell motility, intravasation, and lung metastases. These effects correlated with inhibition of Akt activity and FKHRL1 phosphorylation. Fc:TβRII also inhibited metastases from transplanted 4T1 and EMT-6 mammary tumors in syngeneic BALB/c mice. Tumor microvessel density in a mouse dorsal skin window chamber was unaffected by Fc:TβRII. Therefore, blockade of TGF-β signaling may reduce tumor cell viability and migratory potential and represents a testable therapeutic approach against metastatic carcinomas.


Nature Reviews Clinical Oncology | 2012

Treatment of HER2-positive breast cancer: current status and future perspectives

Carlos L. Arteaga; Mark X. Sliwkowski; C. Kent Osborne; Edith A. Perez; Fabio Puglisi; Luca Gianni

The advent of HER2-directed therapies has significantly improved the outlook for patients with HER2-positive early stage breast cancer. However, a significant proportion of these patients still relapse and die of breast cancer. Trials to define, refine and optimize the use of the two approved HER2-targeted agents (trastuzumab and lapatinib) in patients with HER2-positive early stage breast cancer are ongoing. In addition, promising new approaches are being developed including monoclonal antibodies and small-molecule tyrosine kinase inhibitors targeting HER2 or other HER family members, antibodies linked to cytotoxic moieties or modified to improve their immunological function, immunostimulatory peptides, and targeting the PI3K and IGF-1R pathways. Improved understanding of the HER2 signaling pathway, its relationship with other signaling pathways and mechanisms of resistance has also led to the development of rational combination therapies and to a greater insight into treatment response in patients with HER2-positive breast cancer. Based on promising results with new agents in HER2-positive advanced-stage disease, a series of large trials in the adjuvant and neoadjuvant settings are planned or ongoing. This Review focuses on current treatment for patients with HER2-positive breast cancer and aims to update practicing clinicians on likely future developments in the treatment for this disease according to ongoing clinical trials and translational research.


Oncogene | 2003

Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors

Roberto Bianco; Incheol Shin; Christoph A. Ritter; F. Michael Yakes; Andrea Basso; Neal Rosen; Junji Tsurutani; Phillip A. Dennis; Gordon B. Mills; Carlos L. Arteaga

We have examined the possible mechanisms of resistance to the epidermal growth factor receptor (EGFR) inhibitors in tumor cells with variable levels of EGFR. ZD1839 (Iressa) is a small-molecular-weight, ATP-mimetic that specifically inhibits the EGFR tyrosine kinase. A431 cell growth was markedly inhibited by ZD1839 (IC50⩽0.1 μM) whereas the MDA-468 cells were relatively resistant (IC502 μM). Low doses of ZD1839 delayed cell cycle progression and induced apoptosis in A431 cells but not in MDA-468 cells. In both cell lines, 0.1 μM ZD1839 eliminated EGFR phosphorylation. However, the basal activity of the phosphatidylinositol-3 kinase (PI3 K) target Akt was eliminated in A431 but not in MDA-468 cells, implying that their Akt activity is independent of EGFR signals. A431 cells express PTEN/MMAC1/TEP, a phosphatase that can dephosphorylate position D3 of phosphatidylinositol-3,4,5 trisphosphate, the site that recruits the plecstrin-homology domain of Akt to the cell membrane. On the contrary, MDA-468 cells lack the phosphatase and tensin homolog (PTEN), potentially setting Akt activity at a high threshold that is unresponsive to EGFR inhibition alone. Therefore, we reintroduced (PTEN) by retroviral infection in MDA-468 cells. In MDA-468/PTEN but not in vector controls, treatment with ZD1839 inhibited P-Akt levels, induced relocalization of the Forkhead factor FKHRL1 to the cell nucleus, and increased FKHRL1-dependent transcriptional activity. ZD1839 induced a greater degree of apoptosis and cell cycle delay in PTEN-reconstituted than in control cells. These data suggest that loss of PTEN, by permitting a high level of Akt activity independent of receptor tyrosine kinase inputs, can temporally dissociate the inhibition of the EGFR with that of Akt induced by EGFR inhibitors. Thus, in EGFR-expressing tumor cells with concomitant amplification(s) of PI3K-Akt signaling, combined blockade of the EGFR tyrosine kinase and Akt should be considered as a therapeutic approach.


Clinical Cancer Research | 2007

Human Breast Cancer Cells Selected for Resistance to Trastuzumab In vivo Overexpress Epidermal Growth Factor Receptor and ErbB Ligands and Remain Dependent on the ErbB Receptor Network

Christoph A. Ritter; Marianela Perez-Torres; Cammie Rinehart; Marta Guix; Teresa C. Dugger; Jeffrey A. Engelman; Carlos L. Arteaga

Purpose: We have investigated mechanisms of acquired resistance to the HER2 antibody trastuzumab in BT-474 human breast cancer cells. Experimental Design: BT-474 xenografts established in athymic nude mice were eliminated by trastuzumab. Continuous cell lines (HR for Herceptin resistant) were generated from tumors that recurred in the presence of continuous antibody therapy. Results: The isolated cells behaved resistant to trastuzumab in culture as well as when reinjected into nude mice. They retained HER2 gene amplification and trastuzumab binding and were exquisitely sensitive to peripheral blood mononuclear cells ex vivo in the presence of the antibody. The HR cells exhibited higher levels of phosphorylated epidermal growth factor receptor (EGFR) and EGFR/HER2 heterodimers. Phosphorylation of HER2 in HR cells was inhibited by the EGFR tyrosine kinase inhibitors erlotinib and gefitinib. Gefitinib also inhibited the basal association of p85 with phosphorylated HER3 in HR cells. Both inhibitors as well as the dual EGFR/HER2 inhibitor, lapatinib, induced apoptosis of the HR cells in culture. Growth of established HR5 xenografts was inhibited by erlotinib in vivo. In addition, the HR cells overexpressed EGFR, transforming growth factor α, heparin-binding EGF, and heregulin RNAs compared with the parental trastuzumab-sensitive cells. Conclusions: These results are consistent with the inability of trastuzumab to block the heterodimerization of HER2 and suggest that amplification of ligand-induced activation of ErbB receptors is a plausible mechanism of acquired resistance to trastuzumab that should be investigated in primary mammary cancers.


Journal of Clinical Investigation | 1993

Anti-transforming growth factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-beta interactions in human breast cancer progression.

Carlos L. Arteaga; Stephen D. Hurd; Angela R. Winnier; Mahlon D. Johnson; B M Fendly; James T. Forbes

TGF-beta effects on angiogenesis, stroma formation, and immune function suggest its possible involvement in tumor progression. This hypothesis was tested using the 2G7 IgG2b, which neutralizes TGF-beta 1, -beta 2, and -beta 3, and the MDA-231 human breast cancer cell line. Inoculation of these cells in athymic mice decreases mouse spleen natural killer (NK) cell activity. Intraperitoneal injections of 2G7 starting 1 d after intraperitoneal inoculation of tumor cells suppressed intraabdominal tumor and lung metastases, whereas the nonneutralizing anti-TGF-beta 12H5 IgG2a had no effect. 2G7 transiently inhibited growth of established MDA-231 subcutaneous tumors. Histologically, both 2G7-treated and control tumors were identical. Intraperitoneal administration of 2G7 resulted in a marked increase in mouse spleen NK cell activity. 2G7 did not inhibit MDA-231 primary tumor or metastases formation, nor did it stimulate NK cell-mediated cytotoxicity in beige NK-deficient nude mice. Finally, serum-free conditioned medium from MDA-231 cells inhibited the NK cell activity of human blood lymphocytes. This inhibition was blocked by the neutralizing anti-TGF-beta 2G7 antibody but not by a nonspecific IgG2. These data support a possible role for tumor cell TGF-beta in the progression of mammary carcinomas by suppressing host immune surveillance.


Cancer Cell | 2014

ERBB Receptors: From Oncogene Discovery to Basic Science to Mechanism-Based Cancer Therapeutics

Carlos L. Arteaga; Jeffrey A. Engelman

ERBB receptors were linked to human cancer pathogenesis approximately three decades ago. Biomedical investigators have since developed substantial understanding of the biology underlying the dependence of cancers on aberrant ERBB receptor signaling. An array of cancer-associated genetic alterations in ERBB receptors has also been identified. These findings have led to the discovery and development of mechanism-based therapies targeting ERBB receptors that have improved outcome for many cancer patients. In this Perspective, we discuss current paradigms of targeting ERBB receptors with cancer therapeutics and our understanding of mechanisms of action and resistance to these drugs. As current strategies still have limitations, we also discuss challenges and opportunities that lie ahead as basic scientists and clinical investigators work toward more breakthroughs.

Collaboration


Dive into the Carlos L. Arteaga's collaboration.

Top Co-Authors

Avatar

Justin M. Balko

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Melinda E. Sanders

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Teresa C. Dugger

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gordon B. Mills

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge