Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Violeta Sanchez is active.

Publication


Featured researches published by Violeta Sanchez.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Transcriptional and posttranslational up-regulation of HER3 (ErbB3) compensates for inhibition of the HER2 tyrosine kinase

Joan T. Garrett; Maria Graciela Olivares; Cammie Rinehart; Nara De Matos Granja-Ingram; Violeta Sanchez; Anindita Chakrabarty; Bhuvanesh Dave; Rebecca S. Cook; William Pao; Eliot McKinely; Henry C. Manning; Jenny Chang; Carlos L. Arteaga

Sustained and complete inhibition of HER3 and its output to PI3K/Akt are required for the optimal antitumor effect of therapeutic inhibitors of the HER2 oncogene. Here, we show that, after inhibition of the HER2 tyrosine kinase with lapatinib, there is PI3K/Akt and FoxO3a-dependent up-regulation of HER3 mRNA and protein. Up-regulated HER3 was then phosphorylated by residual HER2 activity, thus partially maintaining P-Akt and limiting the antitumor action of lapatinib. Inhibition of HER3 with siRNA or a neutralizing HER3 antibody sensitized HER2+ breast cancer cells and xenografts to lapatinib both in vitro and in vivo. Combined blockade of HER2 and HER3 inhibited pharmacodynamic biomarkers of PI3K/Akt activity more effectively than each inhibitor alone. These results suggest that because of HER3-mediated compensation, current clinical inhibitors of HER2 and PI3K/Akt will not block the PI3K pathway completely. They also suggest that therapeutic inhibitors of HER3 should be used in combination with HER2 inhibitors and PI3K pathway inhibitors in patients with HER2- and PI3K-dependent cancers.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Feedback upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K inhibitors

Anindita Chakrabarty; Violeta Sanchez; Maria G. Kuba; Cammie Rinehart; Carlos L. Arteaga

We examined the effects of an inhibitor of PI3K, XL147, against human breast cancer cell lines with constitutive PI3K activation. Treatment with XL147 resulted in dose-dependent inhibition of cell growth and levels of pAKT and pS6, signal transducers in the PI3K/AKT/TOR pathway. In HER2-overexpressing cells, inhibition of PI3K was followed by up-regulation of expression and phosphorylation of multiple receptor tyrosine kinases, including HER3. Knockdown of FoxO1 and FoxO3a transcription factors suppressed the induction of HER3, InsR, IGF1R, and FGFR2 mRNAs upon inhibition of PI3K. In HER2+ cells, knockdown of HER3 with siRNA or cotreatment with the HER2 inhibitors trastuzumab or lapatinib enhanced XL147-induced cell death and inhibition of pAKT and pS6. Trastuzumab and lapatinib each synergized with XL147 for inhibition of pAKT and growth of established BT474 xenografts. These data suggest that PI3K antagonists will inhibit AKT and relieve suppression of receptor tyrosine kinase expression and their activity. Relief of this feedback limits the sustained inhibition of the PI3K/AKT pathway and attenuates the response to these agents. As a result, PI3K pathway inhibitors may have limited clinical activity overall if used as single agents. In patients with HER2-overexpressing breast cancer, PI3K inhibitors should be used in combination with HER2/HER3 antagonists.


Journal of Clinical Investigation | 2013

TGF-β inhibition enhances chemotherapy action against triple-negative breast cancer

Neil E. Bhola; Justin M. Balko; Teresa C. Dugger; Maria G. Kuba; Violeta Sanchez; Melinda E. Sanders; Jamie C. Stanford; Rebecca S. Cook; Carlos L. Arteaga

After an initial response to chemotherapy, many patients with triple-negative breast cancer (TNBC) have recurrence of drug-resistant metastatic disease. Studies with TNBC cells suggest that chemotherapy-resistant populations of cancer stem-like cells (CSCs) with self-renewing and tumor-initiating capacities are responsible for these relapses. TGF-β has been shown to increase stem-like properties in human breast cancer cells. We analyzed RNA expression in matched pairs of primary breast cancer biopsies before and after chemotherapy. Biopsies after chemotherapy displayed increased RNA transcripts of genes associated with CSCs and TGF-β signaling. In TNBC cell lines and mouse xenografts, the chemotherapeutic drug paclitaxel increased autocrine TGF-β signaling and IL-8 expression and enriched for CSCs, as indicated by mammosphere formation and CSC markers. The TGF-β type I receptor kinase inhibitor LY2157299, a neutralizing TGF-β type II receptor antibody, and SMAD4 siRNA all blocked paclitaxel-induced IL8 transcription and CSC expansion. Moreover, treatment of TNBC xenografts with LY2157299 prevented reestablishment of tumors after paclitaxel treatment. These data suggest that chemotherapy-induced TGF-β signaling enhances tumor recurrence through IL-8-dependent expansion of CSCs and that TGF-β pathway inhibitors prevent the development of drug-resistant CSCs. These findings support testing a combination of TGF-β inhibitors and anticancer chemotherapy in patients with TNBC.


Cancer Research | 2011

A Kinome-Wide Screen Identifies the Insulin/IGF-I Receptor Pathway as a Mechanism of Escape from Hormone Dependence in Breast Cancer

Emily M. Fox; Todd W. Miller; Justin M. Balko; Maria G. Kuba; Violeta Sanchez; R. Adam Smith; Shuying Liu; Ana M. Gonzalez-Angulo; Gordon B. Mills; Fei Ye; Yu Shyr; H. Charles Manning; Elizabeth Buck; Carlos L. Arteaga

Estrogen receptor α (ER)-positive breast cancers adapt to hormone deprivation and become resistant to antiestrogens. In this study, we sought to identify kinases essential for growth of ER(+) breast cancer cells resistant to long-term estrogen deprivation (LTED). A kinome-wide siRNA screen showed that the insulin receptor (InsR) is required for growth of MCF-7/LTED cells. Knockdown of InsR and/or insulin-like growth factor-I receptor (IGF-IR) inhibited growth of 3 of 4 LTED cell lines. Inhibition of InsR and IGF-IR with the dual tyrosine kinase inhibitor OSI-906 prevented the emergence of hormone-independent cells and tumors in vivo, inhibited parental and LTED cell growth and PI3K/AKT signaling, and suppressed growth of established MCF-7 xenografts in ovariectomized mice, whereas treatment with the neutralizing IGF-IR monoclonal antibody MAB391 was ineffective. Combined treatment with OSI-906 and the ER downregulator fulvestrant more effectively suppressed hormone-independent tumor growth than either drug alone. Finally, an insulin/IGF-I gene expression signature predicted recurrence-free survival in patients with ER(+) breast cancer treated with the antiestrogen tamoxifen. We conclude that therapeutic targeting of both InsR and IGF-IR should be more effective than targeting IGF-IR alone in abrogating resistance to endocrine therapy in breast cancer.


Journal of Clinical Oncology | 2008

Short Preoperative Treatment With Erlotinib Inhibits Tumor Cell Proliferation in Hormone Receptor–Positive Breast Cancers

Marta Guix; Nara de Matos Granja; Ingrid Meszoely; Theresa B. Adkins; Bobbye M. Wieman; Kerek E. Frierson; Violeta Sanchez; Melinda E. Sanders; Ana M. Grau; Ingrid A. Mayer; Gary Pestano; Yu Shyr; Senthil K. Muthuswamy; Benjamin Calvo; Helen Krontiras; Ian E. Krop; Mark C. Kelley; Carlos L. Arteaga

PURPOSE To administer the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib to patients with operable untreated breast cancer during the immediate preoperative period and to measure an antiproliferative and/or a proapoptotic effect in the post-therapy specimen and determine a biomarker profile associated with evidence of erlotinib-mediated cellular activity. PATIENTS AND METHODS Newly diagnosed patients with stages I to IIIA invasive breast cancer were treated with erlotinib 150 mg/d orally for 6 to 14 days until the day before surgery. Erlotinib plasma levels were measured by tandem mass spectrometry the day of surgery. Drug-induced changes in tumor cell proliferation and apoptosis were assessed by Ki67 immunohistochemistry and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick-end labeling analysis, respectively, in biopsies from the pretherapy and surgical specimens. Biopsies were also evaluated for P-EGFR, P-HER-2, P-MAPK, P-Akt, P-S6, and S118 P-ER alpha. RESULTS In drug-sensitive PC9 xenografts, 5 days of treatment with erlotinib were enough to induce a maximal inhibition of cell proliferation and induction of apoptosis. Forty-one patients completed preoperative treatment with erlotinib. Grade <or= 2 rash and diarrhea were the main toxicities. Erlotinib inhibited tumor cell proliferation (Ki67), P-EGFR, and P-HER-2. The inhibition of proliferation occurred in estrogen receptor (ER) -positive but not in human epidermal growth factor receptor 2 (HER-2) -positive or triple-negative cancers. Treatment was associated with a significant reduction of P-MAPK, P-Akt, P-S6, and S118 P-ER alpha in hormone receptor-positive cancers. CONCLUSION A presurgical approach to evaluate cellular responses to new drugs is feasible in breast cancer. EGFR inhibitors are worthy of testing against ER-positive breast cancers but are unlikely to have clinical activity against HER-2-positive or triple-negative breast cancers.


Clinical Cancer Research | 2009

Inhibition of Mammalian Target of Rapamycin Is Required for Optimal Antitumor Effect of HER2 Inhibitors against HER2-Overexpressing Cancer Cells

Todd W. Miller; James T. Forbes; Chirayu Shah; Shelby K. Wyatt; H. Charles Manning; Maria Graciela Olivares; Violeta Sanchez; Teresa C. Dugger; Nara de Matos Granja; Archana Narasanna; Rebecca S. Cook; J. Phillip Kennedy; Craig W. Lindsley; Carlos L. Arteaga

Purpose: A significant fraction of HER2-overexpressing breast cancers exhibit resistance to the HER2 antibody trastuzumab. Hyperactivity of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway confers trastuzumab resistance, and mammalian target of rapamycin (mTOR) is a major downstream effector of PI3K/AKT. Therefore, we examined whether mTOR inhibitors synergize with trastuzumab. Experimental Design: Immunocompetent mice bearing HER2+ mammary tumors were treated with trastuzumab, the mTOR inhibitor rapamycin, or the combination. Mice were imaged for tumor cell death using an optical Annexin-V probe and with [18F]FDG positron emission tomography. The signaling and growth effects of the mTOR inhibitor RAD001 on HER2+ cells treated with trastuzumab or lapatinib were evaluated. Results: Treatment of mice with trastuzumab plus rapamycin was more effective than single-agent treatments, inducing complete regression of 26 of 26 tumors. The combination induced tumor cell death (Annexin-V binding) and inhibited FDG uptake. Rapamycin inhibited mTOR and tumor cell proliferation as determined by phosphorylated S6 and Ki-67 immunohistochemistry, respectively. In culture, the combination of RAD001 plus trastuzumab inhibited cell growth more effectively than either drug alone. Trastuzumab partially decreased PI3K but not mTOR activity. Knockdown of TSC2 resulted in HER2-independent activation of mTOR and dampened the response to trastuzumab and lapatinib. Treatment with the HER2 inhibitor lapatinib decreased phosphorylated S6 and growth in TSC2-expressing cells but not in TSC2-knockdown cells. Conclusions: Inhibition of PI3K and mTOR are required for the growth-inhibitory effect of HER2 antagonists. These findings collectively support the combined use of trastuzumab and mTOR inhibitors for the treatment of HER2+ breast cancer. (Clin Cancer Res 2009;15(23):7266–76)


Proceedings of the National Academy of Sciences of the United States of America | 2013

Mutant PIK3CA accelerates HER2-driven transgenic mammary tumors and induces resistance to combinations of anti-HER2 therapies

Ariella B. Hanker; Adam D. Pfefferle; Justin M. Balko; Maria G. Kuba; Christian D. Young; Violeta Sanchez; Cammie R. Sutton; Hailing Cheng; Charles M. Perou; Jean Zhao; Rebecca S. Cook; Carlos L. Arteaga

Human epidermal growth factor receptor 2 (HER2; ERBB2) amplification and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) mutations often co-occur in breast cancer. Aberrant activation of the phosphatidylinositol 3-kinase (PI3K) pathway has been shown to correlate with a diminished response to HER2-directed therapies. We generated a mouse model of HER2-overexpressing (HER2+), PIK3CAH1047R-mutant breast cancer. Mice expressing both human HER2 and mutant PIK3CA in the mammary epithelium developed tumors with shorter latencies compared with mice expressing either oncogene alone. HER2 and mutant PIK3CA also cooperated to promote lung metastases. By microarray analysis, HER2-driven tumors clustered with luminal breast cancers, whereas mutant PIK3CA tumors were associated with claudin-low breast cancers. PIK3CA and HER2+/PIK3CA tumors expressed elevated transcripts encoding markers of epithelial-to-mesenchymal transition and stem cells. Cells from HER2+/PIK3CA tumors more efficiently formed mammospheres and lung metastases. Finally, HER2+/PIK3CA tumors were resistant to trastuzumab alone and in combination with lapatinib or pertuzumab. Both drug resistance and enhanced mammosphere formation were reversed by treatment with a PI3K inhibitor. In sum, PIK3CAH1047R accelerates HER2-mediated breast epithelial transformation and metastatic progression, alters the intrinsic phenotype of HER2-overexpressing cancers, and generates resistance to approved combinations of anti-HER2 therapies.


Clinical Cancer Research | 2016

RAS/MAPK Activation Is Associated with Reduced Tumor-Infiltrating Lymphocytes in Triple-Negative Breast Cancer: Therapeutic Cooperation Between MEK and PD-1/PD-L1 Immune Checkpoint Inhibitors

Sherene Loi; Sathana Dushyanthen; Paul A. Beavis; Roberto Salgado; Carsten Denkert; Peter Savas; Susan E. Combs; David L. Rimm; Jennifer M. Giltnane; Monica V. Estrada; Violeta Sanchez; Melinda E. Sanders; Rebecca S. Cook; Mark Pilkinton; S. Mallal; Kai Wang; Vincent A. Miller; Philip J. Stephens; Roman Yelensky; Franco Doimi; Henry Gomez; Sergey Ryzhov; Phillip K. Darcy; Carlos L. Arteaga; Justin M. Balko

Purpose: Tumor-infiltrating lymphocytes (TIL) in the residual disease (RD) of triple-negative breast cancers (TNBC) after neoadjuvant chemotherapy (NAC) are associated with improved survival, but insight into tumor cell-autonomous molecular pathways affecting these features are lacking. Experimental Design: We analyzed TILs in the RD of clinically and molecularly characterized TNBCs after NAC and explored therapeutic strategies targeting combinations of MEK inhibitors with PD-1/PD-L1–targeted immunotherapy in mouse models of breast cancer. Results: Presence of TILs in the RD was significantly associated with improved prognosis. Genetic or transcriptomic alterations in Ras–MAPK signaling were significantly correlated with lower TILs. MEK inhibition upregulated cell surface MHC expression and PD-L1 in TNBC cells both in vivo and in vitro. Moreover, combined MEK and PD-L1/PD-1 inhibition enhanced antitumor immune responses in mouse models of breast cancer. Conclusions: These data suggest the possibility that Ras–MAPK pathway activation promotes immune-evasion in TNBC, and support clinical trials combining MEK- and PD-L1–targeted therapies. Furthermore, Ras/MAPK activation and MHC expression may be predictive biomarkers of response to immune checkpoint inhibitors. Clin Cancer Res; 22(6); 1499–509. ©2015 AACR.


Cancer Research | 2012

HER3 Is Required for HER2-Induced Preneoplastic Changes to the Breast Epithelium and Tumor Formation

David B. Vaught; Jamie C. Stanford; Christian D. Young; Donna Hicks; Frank Wheeler; Cammie Rinehart; Violeta Sanchez; John G. Koland; William J. Muller; Carlos L. Arteaga; Rebecca S. Cook

Increasing evidence suggests that HER2-amplified breast cancer cells use HER3/ErbB3 to drive therapeutic resistance to HER2 inhibitors. However, the role of ErbB3 in the earliest events of breast epithelial transformation remains unknown. Using mouse mammary specific models of Cre-mediated ErbB3 ablation, we show that ErbB3 loss prevents the progressive transformation of HER2-overexpressing mammary epithelium. Decreased proliferation and increased apoptosis were seen in MMTV-HER2 and MMTV-Neu mammary glands lacking ErbB3, thus inhibiting premalignant HER2-induced hyperplasia. Using a transgenic model in which HER2 and Cre are expressed from a single polycistronic transcript, we showed that palpable tumor penetrance decreased from 93.3% to 6.7% upon ErbB3 ablation. Penetrance of ductal carcinomas in situ was also decreased. In addition, loss of ErbB3 impaired Akt and p44/42 phosphorylation in preneoplastic HER2-overexpressing mammary glands and in tumors, decreased growth of preexisting HER2-overexpressing tumors, and improved tumor response to the HER2 tyrosine kinase inhibitor lapatinib. These events were rescued by reexpression of ErbB3, but were only partially rescued by ErbB36F, an ErbB3 mutant harboring six tyrosine-to-phenylalanine mutations that block its interaction with phosphatidyl inositol 3-kinase. Taken together, our findings suggest that ErbB3 promotes HER2-induced changes in the breast epithelium before, during, and after tumor formation. These results may have important translational implications for the treatment and prevention of HER2-amplified breast tumors through ErbB3 inhibition.


Clinical Cancer Research | 2009

Imaging Biomarkers Predict Response to Anti-HER2 (ErbB2) Therapy in Preclinical Models of Breast Cancer

Chirayu Shah; Todd W. Miller; Shelby K. Wyatt; Eliot T. McKinley; Maria Graciela Olivares; Violeta Sanchez; Donald D. Nolting; Jason R. Buck; Ping Zhao; M. Sib Ansari; Ronald M. Baldwin; John C. Gore; Rachel Schiff; Carlos L. Arteaga; H. Charles Manning

Purpose: To evaluate noninvasive imaging methods as predictive biomarkers of response to trastuzumab in mouse models of HER2-overexpressing breast cancer. The correlation between tumor regression and molecular imaging of apoptosis, glucose metabolism, and cellular proliferation was evaluated longitudinally in responding and nonresponding tumor-bearing cohorts. Experimental Design: Mammary tumors from MMTV/HER2 transgenic female mice were transplanted into syngeneic female mice. BT474 human breast carcinoma cell line xenografts were grown in athymic nude mice. Tumor cell apoptosis (NIR700-Annexin V accumulation), glucose metabolism [2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography ([18F]FDG-PET)], and proliferation [3′-[18F]fluoro-3′-deoxythymidine-PET ([18F]FLT-PET)] were evaluated throughout a biweekly trastuzumab regimen. Imaging metrics were validated by direct measurement of tumor size and immunohistochemical analysis of cleaved caspase-3, phosphorylated AKT, and Ki67. Results: NIR700-Annexin V accumulated significantly in trastuzumab-treated MMTV/HER2 and BT474 tumors that ultimately regressed but not in nonresponding or vehicle-treated tumors. Uptake of [18F]FDG was not affected by trastuzumab treatment in MMTV/HER2 or BT474 tumors. [18F]FLT-PET imaging predicted trastuzumab response in BT474 tumors but not in MMTV/HER2 tumors, which exhibited modest uptake of [18F]FLT. Close agreement was observed between imaging metrics and immunohistochemical analysis. Conclusions: Molecular imaging of apoptosis accurately predicts trastuzumab-induced regression of HER2+ tumors and may warrant clinical exploration to predict early response to neoadjuvant trastuzumab. Trastuzumab does not seem to alter glucose metabolism substantially enough to afford [18F]FDG-PET significant predictive value in this setting. Although promising in one preclinical model, further studies are required to determine the overall value of [18F]FLT-PET as a biomarker of response to trastuzumab in HER2+ breast cancer.

Collaboration


Dive into the Violeta Sanchez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Justin M. Balko

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Melinda E. Sanders

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge