Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Santiago Cal is active.

Publication


Featured researches published by Santiago Cal.


Oncogene | 2005

The Wnt antagonist DICKKOPF-1 gene is a downstream target of β -catenin/TCF and is downregulated in human colon cancer

José Manuel González-Sancho; Oscar Aguilera; José Miguel López García; Natalia Pendás-Franco; Cristina Peña; Santiago Cal; Antonio García de Herreros; Félix Bonilla; Alberto Muñoz

Wnt glycoproteins regulate homeostasis and development by binding to membrane Frizzled-LRP5/6 receptor complexes. Wnt signaling includes a canonical pathway involving cytosolic β-catenin stabilization, nuclear translocation and gene regulation, acting as a co-activator of T-cell factor (TCF) proteins, and noncanonical pathways that activate Rho, Rac, JNK and PKC, or modulate Ca2+ levels. DICKKOPF-1 (DKK-1) encodes a secreted Wnt antagonist that binds to LRP5/6 and induces its endocytosis, leading to inhibition of the canonical pathway. We show that activation of canonical signaling by Wnt1 or ectopic expression of active β-catenin, TCF4 or LRP6 mutants induces transcription of the human DKK-1 gene. Multiple β-catenin/TCF4 sites in the DKK-1 gene promoter contribute to this activation. In contrast, Wnt5a, which signals through noncanonical pathways, does not activate DKK-1. Northern and Western blot studies show that activation of the Wnt/β-catenin pathway by treatment with lithium or Wnt3a-conditioned medium, or by stable expression of either Wnt1 or β-catenin, increases DKK-1 RNA and protein, thus initiating a negative feedback loop. However, we found that DKK-1 expression decreases in human colon tumors, which suggests that DKK-1 acts as a tumor suppressor gene in this neoplasia. Our data indicate that the Wnt/β-catenin pathway is downregulated by the induction of DKK-1 expression, a mechanism that is lost in colon cancer.


Gene | 2002

Cloning, expression analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains

Santiago Cal; Alvaro J. Obaya; María Llamazares; Cecilia Garabaya; Víctor Quesada; Carlos López-Otín

ADAMTS (A Disintegrin And Metalloproteinase domain, with ThromboSpondin type-1 modules) is a recently described family of zinc-dependent proteases which play important roles in a variety of normal and pathological conditions, including arthritis and cancer. In this work, we report the identification and cloning of cDNAs encoding seven new human ADAMTSs. These novel enzymes have been called ADAMTS-13, -14, -15, -16, -17, -18, and -19. All of them show a domain organization similar to that of previously characterized family members, consisting of a signal sequence, a propeptide, a metalloproteinase domain, a disintegrin-like domain, a cysteine-rich region, and a variable number of TS-1 repeats. Expression analysis revealed that these ADAMTS genes are mainly expressed in fetal tissues, especially in lung (ADAMTS14, ADAMTS16, ADAMTS17, ADAMTS18, and ADAMTS19), kidney (ADAMTS14, ADAMTS15, and ADAMTS16), and liver (ADAMTS13, ADAMTS15 and ADAMTS18). Reverse transcriptase--polymerase chain reaction analysis also revealed the expression of some of these new ADAMTSs in different human adult tissues, such as prostate (ADAMTS13, ADAMTS17, and ADAMTS18), and brain (ADAMTS13, ADAMTS16, ADAMTS17, and ADAMTS18). High levels of ADAMTSs transcripts were also observed in some tumor biopsies and cells lines, including osteosarcomas (ADAMTS19), melanoma and colon carcinoma cells (ADAMTS13). Chromosomal location analysis indicated that the seven identified ADAMTS genes are dispersed in the human genome mapping to 9q34, 10q21, 11q25, 5p15, 15q24, 16q23, and 5q31, respectively. According to these results, together with a comparative analysis of ADAMTSs in other eukaryotic organisms, we conclude that these enzymes, with at least 18 distinct members encoded within the human genome, represent an example of a widely expanded protease family during metazoan evolution.


Journal of Biological Chemistry | 2002

Matriptase-2, a Membrane-bound Mosaic Serine Proteinase Predominantly Expressed in Human Liver and Showing Degrading Activity against Extracellular Matrix Proteins

Gloria Velasco; Santiago Cal; Víctor Quesada; Luis M. Sánchez; Carlos López-Otín

We have identified and cloned a fetal liver cDNA encoding a new serine proteinase that has been called matriptase-2. This protein exhibits a domain organization similar to other members of an emerging family of membrane-bound serine proteinases known as type II transmembrane serine proteinases. Matriptase-2 contains a short cytoplasmic domain, a type II transmembrane sequence, a central region with several modular structural domains including two CUB (complement factor C1s/C1r, urchin embryonic growth factor,bone morphogenetic protein) domains and three low density lipoprotein receptor tandem repeats, and finally, a C-terminal catalytic domain with all typical features of serine proteinases. The human matriptase-2 gene maps to 22q12-q13, a location that differs from all type II transmembrane serine proteinase genes mapped to date. Immunofluorescence and Western blot analysis of COS-7 cells transfected with the isolated cDNA confirmed that matriptase-2 is anchored to the cell surface. Matriptase-2 was expressed in Escherichia coli, and the purified recombinant protein hydrolyzed synthetic substrates used for assaying serine proteinases and endogenous proteins such as type I collagen, fibronectin, and fibrinogen. Matriptase-2 could also activate single-chain urokinase plasminogen activator, albeit with low efficiency. These activities were abolished by inhibitors of serine proteinases but not by inhibitors of other classes of proteolytic enzymes. Northern blot analysis demonstrated that matriptase-2 transcripts are only detected at significant levels in both fetal and adult liver, suggesting that this novel serine proteinase may play a specialized role in matrix remodeling processes taking place in this tissue during development or in adult tissues.


Journal of Biological Chemistry | 2001

Identification, Characterization, and Intracellular Processing of ADAM-TS12, a Novel Human Disintegrin with a Complex Structural Organization Involving Multiple Thrombospondin-1 Repeats

Santiago Cal; José M. Argüelles; Pedro Lorca Fernández; Carlos López-Otín

We have identified and cloned a human fetal lung cDNA encoding a new protein of the ADAM-TS family (a disintegrin and metalloproteinase domain, with thrombospondin type-1 modules) that has been called ADAM-TS12. This protein exhibits a domain organization similar to the remaining family members including a propeptide and metalloproteinase-like, disintegrin-like, and cysteine-rich domains. However, the number and organization of the TS repeats is unique with respect to other human ADAM-TSs. A total of eight TS-1 repeats arranged in three groups are present in this novel ADAM-TS. Analysis of intracellular processing of ADAM-TS12 revealed that it is synthesized as a precursor molecule that is first activated by cleavage of the prodomain in a furin-mediated process and subsequently processed into two fragments of different size: a 120-kDa N-terminal proteolytically active fragment containing the metalloproteinase and disintegrin domains, and a 83-kDa C-terminal fragment containing most of the TS-1 repeats. Somatic cell hybrid and radiation hybrid mapping experiments showed that the human ADAM-TS12 gene maps to 5q35, a location that differs from all ADAM genes mapped to date. Northern blot analysis of RNAs from human adult and fetal tissues demonstrated that ADAM-TS12 transcripts are only detected at significant levels in fetal lung but not in any other analyzed tissues. In addition, ADAM-TS12 transcripts were detected in gastric carcinomas and in tumor cell lines from diverse sources, being induced by transforming growth factor-β in KMST human fibroblasts. These data suggest that ADAM-TS12 may play roles in pulmonary cells during fetal development or in tumor processes through its proteolytic activity or as a molecule potentially involved in regulation of cell adhesion.


Oncogene | 2010

Higher sensitivity of Adamts12-deficient mice to tumor growth and angiogenesis.

Mehdi El Hour; Angela Moncada-Pazos; Silvia Blacher; Anne Masset; Santiago Cal; Sarah Berndt; Julien Detilleux; Laurent Host; Alvaro J. Obaya; Catherine Maillard; Jean-Michel Foidart; Agnès Noël; Carlos López-Otín

ADAMTS (a disintegrin and metalloproteinase domain with thrombospondin motifs) constitute a family of endopeptidases related to matrix metalloproteinases. These proteases have been largely implicated in tissue remodeling and angiogenesis associated with physiological and pathological processes. To elucidate the in vivo functions of ADAMTS-12, we have generated a knockout mouse strain (Adamts12−/−) in which Adamts12 gene was deleted. The mutant mice had normal gestations and no apparent defects in growth, life span and fertility. By applying three different in vivo models of angiogenesis (malignant keratinocyte transplantation, Matrigel plug and aortic ring assays) to Adamts12−/− mice, we provide evidence for a protective effect of this host enzyme toward angiogenesis and cancer progression. In the absence of Adamts-12, both the angiogenic response and tumor invasion into host tissue were increased. Complementing results were obtained by using medium conditioned by cells overexpressing human ADAMTS-12, which inhibited vessel outgrowth in the aortic ring assay. This angioinhibitory effect of ADAMTS-12 was independent of its enzymatic activity as a mutated inactive form of the enzyme was similarly efficient in inhibiting endothelial cell sprouting in the aortic ring assay than the wild-type form. Altogether, our results show that ADAMTS-12 displays antiangiogenic properties and protect the host toward tumor progression.


Journal of Cell Science | 2007

The ADAMTS12 metalloproteinase exhibits anti-tumorigenic properties through modulation of the Ras-dependent ERK signalling pathway

María Llamazares; Alvaro J. Obaya; Angela Moncada-Pazos; Ritva Heljasvaara; Jesús Espada; Carlos López-Otín; Santiago Cal

Members of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family of proteolytic enzymes are implicated in a variety of physiological processes, such as collagen maturation, organogenesis, angiogenesis, reproduction and inflammation. Moreover, deficiency or overexpression of certain ADAMTS proteins is directly involved in serious human diseases, including cancer. However, the functional roles of other family members, such as ADAMTS12, remain unknown. Here, by using different in vitro and in vivo approaches, we have evaluated the possible role of ADAMTS12 in the development and progression of cancer. First, we show that expression of ADAMTS12 in Madin-Darby canine kidney (MDCK) cells prevents the tumorigenic effects of hepatocyte growth factor (HGF) by blocking the activation of the Ras-MAPK signalling pathway and that this regulation involves the thrombospondin domains of the metalloproteinase. We also show that addition of recombinant human ADAMTS12 to bovine aortic endothelial cells (BAE-1 cells) abolishes their ability to form tubules upon stimulation with vascular endothelial growth factor (VEGF). Additionally, tumours induced in immunodeficient SCID mice injected with A549 cells overexpressing ADAMTS12 show a remarkable growth deficiency in comparison with tumours formed in animals injected with parental A549 cells. Overall, our data suggest that ADAMTS12 confers tumour-protective functions upon cells that produce this proteolytic enzyme.


Cancer Research | 2009

Genetic inactivation of ADAMTS15 metalloprotease in human colorectal cancer.

Cristina G. Viloria; Alvaro J. Obaya; Angela Moncada-Pazos; María Llamazares; Aurora Astudillo; Gabriel Capellá; Santiago Cal; Carlos López-Otín

Matrix metalloproteinases have been traditionally linked to cancer dissemination through their ability to degrade most extracellular matrix components, thus facilitating invasion and metastasis of tumor cells. However, recent functional studies have revealed that some metalloproteases, including several members of the ADAMTS family, also exhibit tumor suppressor properties. In particular, ADAMTS1, ADAMTS9, and ADAMTS18 have been found to be epigenetically silenced in malignant tumors of different sources, suggesting that they may function as tumor suppressor genes. Herein, we show that ADAMTS15 is genetically inactivated in colon cancer. We have performed a mutational analysis of the ADAMTS15 gene in human colorectal carcinomas, with the finding of four mutations in 50 primary tumors and 6 colorectal cancer cell lines. Moreover, functional in vitro and in vivo studies using HCT-116 and SW-620 colorectal cancer cells and severe combined immunodeficient mice have revealed that ADAMTS15 restrains tumor growth and invasion. Furthermore, the presence of ADAMTS15 in human colorectal cancer samples showed a negative correlation with the histopathologic differentiation grade of the corresponding tumors. Collectively, these results provide evidence that extracellular proteases, including ADAMTS15, may be targets of inactivating mutations in human cancer and further validate the concept that secreted metalloproteases may show tumor suppressor properties.


Journal of Cell Science | 2009

The ADAMTS12 metalloprotease gene is epigenetically silenced in tumor cells and transcriptionally activated in the stroma during progression of colon cancer

Angela Moncada-Pazos; Alvaro J. Obaya; Mario F. Fraga; Cristina G. Viloria; Gabriel Capellá; Mireia Gausachs; Manel Esteller; Carlos López-Otín; Santiago Cal

Proteases have long been associated with tumor progression, given their ability to degrade extracellular matrix components and facilitate invasion and metastasis. However, recent findings indicate that different proteases can also act as tumor-suppressor enzymes. We have recently reported that lung carcinoma cells expressing the ADAMTS-12 metalloprotease show a remarkable impairment of growth in immunodeficient mice as compared with parental cells. Here, we show that ADAMTS12 promoter is hypermethylated in cancer cell lines and tumor tissues. Interestingly, ADAMTS12 expression in the stromal cells surrounding epithelial malignant cells is higher than in the paired normal tissues. Moreover, the expression of this metalloprotease in colon fibroblasts co-cultured with colon cancer cell lines is higher than in those cultured alone. Furthermore, the expression of ADAMTS-12 by these fibroblasts is linked with an anti-proliferative effect on tumor cells. Based on these findings, we hypothesize that ADAMTS-12 is a novel anti-tumor protease that can reduce the proliferative properties of tumor cells. This function is lost by epigenetic silencing in tumor cells, but concurrently induced in stromal cells, probably as part of a response of the normal tissue aimed at controlling the progression of cancer.


Frontiers in Pharmacology | 2012

New and Paradoxical Roles of Matrix Metalloproteinases in the Tumor Microenvironment

Agnès Noël; Ana Gutiérrez-Fernández; Nor Eddine Sounni; Niels Behrendt; Erik Maquoi; Ida K. Lund; Santiago Cal; Gunilla Høyer-Hansen; Carlos López-Otín

Processes such as cell proliferation, angiogenesis, apoptosis, or invasion are strongly influenced by the surrounding microenvironment of the tumor. Therefore, the ability to change these surroundings represents an important property through which tumor cells are able to acquire specific functions necessary for tumor growth and dissemination. Matrix metalloproteinases (MMPs) constitute key players in this process, allowing tumor cells to modify the extracellular matrix (ECM) and release cytokines, growth factors, and other cell-surface molecules, ultimately facilitating protease-dependent tumor progression. Remodeling of the ECM by collagenolytic enzymes such as MMP1, MMP8, MMP13, or the membrane-bound MT1-MMP as well as by other membrane-anchored proteases is required for invasion and recruitment of novel blood vessels. However, the multiple roles of the MMPs do not all fit into a simple pattern. Despite the pro-tumorigenic function of certain metalloproteinases, recent studies have shown that other members of these families, such as MMP8 or MMP11, have a protective role against tumor growth and metastasis in animal models. These studies have been further expanded by large-scale genomic analysis, revealing that the genes encoding metalloproteinases, such as MMP8, MMP27, ADAM7, and ADAM29, are recurrently mutated in specific tumors, while several ADAMTSs are epigenetically silenced in different cancers. The importance of these proteases in modifying the tumor microenvironment highlights the need for a deeper understanding of how stroma cells and the ECM can modulate tumor progression.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Polyserase-I, a human polyprotease with the ability to generate independent serine protease domains from a single translation product

Santiago Cal; Cecilia Garabaya; Carlos López-Otín

We have identified and cloned a human liver cDNA encoding an unusual mosaic polyprotein, called polyserase-I (polyserine protease-I). This protein exhibits a complex domain organization including a type II transmembrane motif, a low-density lipoprotein receptor A module, and three tandem serine protease domains. This unusual modular architecture is also present in the sequences predicted for mouse and rat polyserase-I. Human polyserase-I gene maps to 19p13, and its last exon overlaps with that corresponding to the 3′ UTR of the gene encoding translocase of mitochondrial inner membrane 13. Northern blot analysis showed the presence of a major polyserase-I transcript of 5.4 kb in human fetal and adult tissues and in tumor cell lines. Analysis of processing mechanisms of polyserase-I revealed that it is synthesized as a membrane-associated polyprotein that is further processed to generate three independent serine protease units. Two of these domains are proteolytically active against synthetic peptides commonly used for assaying serine proteases. These proteolytic activities of the polyserase-I units are blocked by serine protease inhibitors. We show an example of generation of separate serine protease domains from a single translation product in human tissues and illustrate an additional mechanism for expanding the complexity of the human degradome, the entire protease complement of human cells and tissues.

Collaboration


Dive into the Santiago Cal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge