Carlos M. Abate
National Scientific and Technical Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carlos M. Abate.
Applied Microbiology and Biotechnology | 1996
Marcela A. Ferrero; Guillermo R. Castro; Carlos M. Abate; Mario D. Baigorí; Faustino Siñeriz
Abstract Bacillus licheniformis MIR 29 has been isolated and produces extracellular proteases. It is able to grow at temperatures up to 60 °C and at pH values up to 9.0. Casein was the best carbon source for production of a thermostable protease activity which, in some conditions, is 90% extracellular. The synthesis of alkaline protease is not constitutive; different levels of production were found with different carbon and nitrogen sources. Casein was thought to be an inducer of enzyme synthesis. The optimal pH and temperature of the enzyme activity were 12 °C and 60 °C, respectively. The enzyme was stable up to 60 °C in the absence of stabilizers. The protease activity was inhibited with phenylmethylsulphonyl fluoride, indicating a serine-protease activity. The proteolytic activity was lowered by molecules present in the culture supernatant, which include amino acids and peptides, indicating end-product inhibition. Electrophoresis assay on denaturating gels showed two bands with alkaline protease activity, in the 25 to 40-kDa molecular mass range.
Journal of Basic Microbiology | 2009
Marta A. Polti; Roberto O. García; María Julia Amoroso; Carlos M. Abate
This work provides quantitative information on Cr(VI) reduction in soil samples by an indigenous actinomycete. Streptomyces sp. MC1, previously isolated from sugarcane, has shown ability to reduce Cr(VI) in liquid minimal medium. A reduction of 100 and 75% was obtained at initial Cr(VI) concentrations of 5 and 50 mg l–1, respectively, after 48 h of incubation. Bioremediation ability of Streptomyces sp. MC1 was assayed in soil extracts and soil samples. Relative growth of Streptomyces sp. MC1 was 77 and 38% when grown in soil extract with 10 and 50 mg l–1 of Cr(VI), respectively. MC1 was able to reduce 30% of Cr(VI) after 96 h of incubation with 10 mg l–1 of Cr(VI), and reduction coincided with the exponential growth phase at pH 7 and 30 °C.
International Journal of Systematic and Evolutionary Microbiology | 2010
Virginia Helena Albarracín; Pablo Alonso-Vega; Martha E. Trujillo; María Julia Amoroso; Carlos M. Abate
A novel actinomycete strain, ABO(T), isolated from copper-polluted sediments showed remarkable copper resistance as well as high bioaccumulation abilities. Classical taxonomic methods, including chemotaxonomy and molecular techniques, were used to characterize the isolate. Strain ABO(T) developed a honey-yellow substrate mycelium on all ISP media tested. Abundant, white, aerial mycelium was only formed on ISP 2, 5 and 7 and MM agar. Both types of hyphae fragmented into squarish rod-shaped elements. The aerial mycelium displayed spore-like structures with smooth surfaces in long, straight to flexuous chains. The organism has a type-IV cell wall lacking mycolic acids and type-A whole-cell sugar pattern (meso-diaminopimelic acid, arabinose and galactose) in addition to a phospholipid type-II profile. 16S rRNA gene sequence studies indicated that this organism is a member of the family Pseudonocardiaceae and that it forms a monophyletic clade with Amycolatopsis eurytherma NT202(T). The DNA-DNA relatedness of strain ABO(T) to A. eurytherma DSM 44348(T) was 39.5 %. It is evident from these genotypic and phenotypic data that strain ABO(T) represents a novel species in the genus Amycolatopsis, for which the name proposed is Amycolatopsis tucumanensis sp. nov. The type strain is ABO(T) (=DSM 45259(T) =LMG 24814(T)).
Journal of Basic Microbiology | 2009
Manuel Sineriz; Erika Kothe; Carlos M. Abate
46 actinomycetes were isolated from two polluted sites and one unpolluted site. One strain, F4, was selected through primary qualitative screening assays because of its cadmium resistance, and physiologically and taxonomically characterized. F4 was able to grow at 7.5% NaCl and 100 μg/ml lysozyme and at a pH between 6 and 10. 16S rDNA sequence analysis showed that F4 was closely related to Streptomyces tendae. Growth of Streptomyces sp. F4 on culture medium with 8 mg/l Cd2+ for 8 days showed 80% inhibition. Maximum specific biosorption was 41.7 mg Cd2+/g dry weight after 7 days of growth and highest Cd2+ concentration was found in the cell wall (41.2%). The exopolysaccharide layer only contained 7.4%, whereas 39.4% of Cd2+ was found in the cytosolic fraction. Twelve % was found in the ribosomes and membrane fraction. This was verified with TEM, showing Streptomyces sp. F4 cytoplasm with dark granulate appearance. This study could present the potential capacity of Streptomyces sp. F4 for Cd2+ bioremediation. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Journal of Basic Microbiology | 2008
Virginia Helena Albarracín; Beatriz C. Winik; Erika Kothe; María Julia Amoroso; Carlos M. Abate
Amycolatopsis sp. AB0, a copper resistant actinobacterium isolated from polluted sediments, has shown high copper specific biopsortion ability (25 mg g–1). Two approaches were used to confirm metal accumulation in growing cells of Amycolatopsis sp. AB0; we performed subcellular fractioning assays which showed that the retained copper was associated with the extra‐cellular fraction (exopolymer, 40%), but mainly within the cells. Intracellular distribution of copper was: 86% in the cytosolic fraction, 11% at the cell wall and 3% associated with the ribosome/membrane fraction. Its copper bioaccumulation ability was corroborated by using silver enhanced staining of copper with the Timms reagent technique, which has not been used to detect metal deposits in bacteria before. In addition, we constructed specific oligonucleotides for targeting genes coding for copper P‐Type ATPases that could be involved in the copper uptake ability of this strain. A 607 bp DNA fragment was amplified and sequenced from Amycolatopsis sp AB0. BLAST search analysis showed 71% protein homology of the deduced sequence with a putative cation‐transporting ATPase of Nocardia farcinica and 65% with a copper translocating ATPase of Mycobacterium flavescens. To our knowledge this is the first report of the presence of copper P‐type ATPase genes in the Amycolotopsis genus. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Chemosphere | 2010
Virginia Helena Albarracín; María Julia Amoroso; Carlos M. Abate
Amycolatopsis tucumanensis DSM 45259, the strain of a recently recognized novel species of the genus Amycolatopsis with remarkable copper resistance, was used to bioaugment soil microcosms experimentally polluted with copper and for studying the ability of this strain to effectively diminish phytoavailable copper from soils. Our results demonstrated that A. tucumanensis was capable of profusely colonizing both, copper polluted and non-polluted soil. Copper bioimmobilization ability of A. tucumanensis on soil was assessed measuring the bioavailable copper in the soil solution extracted from polluted soil by using chemical and physical methods and, in this way, 31% lower amounts of the metal were found in soil solution as compared to non-bioaugmented soil. The results obtained when using Zea mays as bioindicator correlated well with the values obtained by the chemical and physical procedures: 20% and 17% lower tissue contents of copper were measured in roots and leaves, respectively. These data confirmed the efficiency of the bioremediation process using A. tucumanensis and at the same time proved that chemical, physical and biological methods for assessing copper bioavailability in soils were correlated. These results suggest a potential use of this strain at large scale in copper soil bioremediation strategies. To our knowledge, this work is the first to apply and to probe the colonization ability of an Amycolatopsis strain in soil microcosms and constitutes the first application of an Amycolatopsis strain on bioremediation of polluted soils.
Applied Microbiology and Biotechnology | 1996
Carlos M. Abate; Danley A. S. Callieri; Emilio Rodríguez; Oscar Garro
Abstract Pure and mixed cultures of Zymomonas mobilis and Saccharomyces sp. were tested for the production of ethanol using sucrose as the carbon source. Both strains, isolated from spontaneously fermenting sugar-cane juice, are flocculent and alcohol-tolerant. The best results were obtained using a mixed culture, with a yield of 0.5 g ethanol/g sugar consumed and a volumetric productivity of 1.5 g ethanol l-1 h-1. No levan was produced even if a sucrose-based medium was used.
Journal of Basic Microbiology | 2011
Héctor Antonio Cristóbal; Maria Alejandra López; Erika Kothe; Carlos M. Abate
From seawater and the intestines of benthonic organisms collected from the Beagle Channel, Argentina, 230 marine bacteria were isolated. Cultivable bacteria were characterized and classified as psychrotolerant, whereas few isolates were psychrophiles. These isolates were capable of producing proteases at 4 and 15 °C under neutral (pH 7.0), alkaline (pH 10.0) and acidic (pH 4.5) conditions on different media, revealing 62, 33 and 22% producers at cold and 84, 47 and 33% producers at low temperatures, respectively. More protease‐producing strains (67%) were detected when isolated from benthic invertebrates as compared to seawater (33%), with protease production under neutral conditions resulting in milk protein hydrolysis halos between 27 and 30 ± 2 mm in diameter. Using sterile 0.22 μm membrane filters, 29 isolates exhibiting extracellular protease activity were detected. These were grouped into six operational taxonomic units by restriction analysis and identified based on 16S rDNA as γ‐proteobacteria of the genera Pseudoalteromonas, Pseudomonas, Shewanella, Alteromonas, Aeromonas, and Serratia. Plasmids were found to be harbored by eight strains, mainly within the isolates from benthonic organisms. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Journal of Basic Microbiology | 2008
Héctor Antonio Cristóbal; Javier D. Breccia; Carlos M. Abate
β ‐Glucosidase is a highly desired glycosidase, especially for hydrolysis of glycoconjugated precursors in musts and wines for the release of active aromatic compounds. A Shewanella sp. G5 strain was isolated from the intestinal content of benthonic organism (Munida subrrugosa) from different coastal areas of the Beagle Channel, Tierra del Fuego (Argentina). This marine bacterium was able to grow at a temperature range between 4 to 20 °C using different β ‐glycoside substrates, such as cellobiose, as carbon source. In this work, the Shewanella sp. G5 strain exhibited high β ‐glucosidase activity on plate at low temperature (4 and 20 °C). Two genes encoding different cold‐active β ‐glucosidases were amplified and sequenced and the nucleotide sequences were submitted to the GenBank. 16S rDNA and gyrB gene sequences were used for the molecular characterization of Shewanella sp. G5. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Chemosphere | 2013
Verónica Leticia Colin; Claudia Pereira; Liliana Beatriz Villegas; María Julia Amoroso; Carlos M. Abate
Surface-active compounds such as synthetic emulsifiers have been used for several decades, both for the degradation of hydrocarbons and increasing desorption of soil-bound metals. However, due to their high toxicity, low degradability, and production costs unaffordable for use in larger ecosystems, synthetic emulsifiers have been gradually replaced by those derived from natural sources such as plants or microbes. In previous studies, the bacterium Streptomyces sp. MC1 has shown the ability to reduce and/or accumulate Cr(VI), a highly promising advance in the development of methods for environmental clean-up of sites contaminated with chromium. Here, new studies on the production of emulsifier from this strain are presented. The cultivation factors that have a significant influence on emulsifier biosynthesis, as well as the interactions among them, were studied by factorial design. Based upon optimization studies, maximum bioemulsifier production was detected in the culture medium having an initial pH of 8 with phosphate 2.0 g L(-1) and Ca(+2) 1.0 g L(-1) added, with an emulsification index about 3.5 times greater compared to the basal value. Interestingly, in the presence of 5.0 g L(-1) Cr(VI), Streptomyces sp. MC1 retained about 65% of its emulsifier production ability. Partially purified emulsifier presented high thermo-stability and partial water solubility. These findings could have promising future prospects for the remediation of organic- and metal-contaminated sites.