Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos Sanchez-Cano is active.

Publication


Featured researches published by Carlos Sanchez-Cano.


Angewandte Chemie | 2017

In-Cell Activation of Organo-Osmium(II) Anticancer Complexes.

Russell J. Needham; Carlos Sanchez-Cano; Xin Zhang; Isolda Romero-Canelón; Abraha Habtemariam; Margaret S. Cooper; Levente K. Meszaros; Guy J. Clarkson; Philip J. Blower; Peter J. Sadler

Abstract The family of iodido OsII arene phenylazopyridine complexes [Os(η6‐p‐cym)(5‐R1‐pyridylazo‐4‐R2‐phenyl))I]+ (where p‐cym=para‐cymene) exhibit potent sub‐micromolar antiproliferative activity towards human cancer cells and are active in vivo. Their chemical behavior is distinct from that of cisplatin: they do not readily hydrolyze, nor bind to DNA bases. We report here a mechanism by which they are activated in cancer cells, involving release of the I− ligand in the presence of glutathione (GSH). The X‐ray crystal structures of two active complexes are reported, 1‐I (R1=OEt, R2=H) and 2‐I (R1=H, R2=NMe2). They were labelled with the radionuclide 131I (β−/γ emitter, t1/2 8.02 d), and their activity in MCF‐7 human breast cancer cells was studied. 1‐[131I] and 2‐[131I] exhibit good stability in both phosphate‐buffered saline and blood serum. In contrast, once taken up by MCF‐7 cells, the iodide ligand is rapidly pumped out. Intriguingly, GSH catalyzes their hydrolysis. The resulting hydroxido complexes can form thiolato and sulfenato adducts with GSH, and react with H2O2 generating hydroxyl radicals. These findings shed new light on the mechanism of action of these organo‐osmium complexes.


Chemistry: A European Journal | 2017

Synchrotron x‐ray fluorescence nanoprobe reveals target sites for organo‐osmium complex in human ovarian cancer cells

Carlos Sanchez-Cano; Isolda Romero-Canelón; Yang Yang; Ian Hands-Portman; Sylvain Bohic; Peter Cloetens; Peter J. Sadler

Abstract A variety of transition metal complexes exhibit anticancer activity, but their target sites in cells need to be identified and mechanisms of action elucidated. Here, it was found that the sub‐cellular distribution of [Os(η6‐p‐cym)(Azpy‐NMe2)I]+ (p‐cym=p‐cymene, Azpy‐NMe2=2‐(p‐[dimethylamino]phenylazo)pyridine) (1), a promising drug candidate, can be mapped in human ovarian cancer cells at pharmacological concentrations using a synchrotron X‐ray fluorescence nanoprobe (SXRFN). SXRFN data for Os, Zn, Ca, and P, as well as TEM and ICP analysis of mitochondrial fractions suggest localization of Os in mitochondria and not in the nucleus, accompanied by mobilization of Ca from the endoplasmic reticulum, a signaling event for cell death. These data are consistent with the ability of 1 to induce rapid bursts of reactive oxygen species and especially superoxide formed in the first step of O2 reduction in mitochondria. Such metabolic targeting differs from the action of Pt drugs, offering promise for combatting Pt resistance, which is a current clinical problem.


Chemistry: A European Journal | 2015

Easy To Synthesize, Robust Organo-osmium Asymmetric Transfer Hydrogenation Catalysts.

James P. C. Coverdale; Carlos Sanchez-Cano; Guy J. Clarkson; Rina Soni; Martin Wills; Peter J. Sadler

Abstract Asymmetric transfer hydrogenation (ATH) is an important process in organic synthesis for which the Noyori‐type RuII catalysts [(arene)Ru(Tsdiamine)] are now well established and widely used. We now demonstrate for the first time the catalytic activity of the osmium analogues. X‐ray crystal structures of the 16‐electron OsII catalysts are almost identical to those of RuII. Intriguingly the precursor complex was isolated as a dichlorido complex with a monodentate amine ligand. The OsII catalysts are readily synthesised (within 1 h) and exhibit excellent enantioselectivity in ATH reactions of ketones.


Polymer Chemistry | 2017

Well-defined hyperstar copolymers based on a thiol–yne hyperbranched core and a poly(2-oxazoline) shell for biomedical applications

Matthias Hartlieb; Thomas Floyd; Alexander B. Cook; Carlos Sanchez-Cano; Sylvain Catrouillet; James A. Burns; Sébastien Perrier

Well defined ‘hyperstar’ copolymers were synthesized by combining hyperbranched polymers produced by thiol–yne chemistry with poly(oxazoline)s. The hyperbranched core was prepared using an AB2 monomer and a trifunctional alkene, applying a monomer feeding approach. The degree of branching was high (0.9) while maintaining low dispersities (1.3). Poly(2-ethyl-2-oxazoline) (PEtOx) functionalized with a thiol end group was coupled to the surface of the hyperbranched structure accessing terminal alkyne units. PEtOx-SH was produced by the termination of the living polymerization with ethyl xanthate and subsequent conversion to thiol under alkaline conditions. The degree of polymerization was varied producing PEtOx with 23 or 42 repeating units, respectively with a dispersity of around 1.1. After conjugation of the polymer arms, hyperstar copolymers were characterized by SEC, NMR spectroscopy, light scattering, and AFM. The polymers were able to encapsulate the hydrophobic dye Nile red within the core of the structure with loading efficiencies between 0.3 and 0.9 wt%. Cytotoxicity of the hyperstars was assessed using A2780 human ovarian carcinoma cells resulting in IC50 values of around 0.7 mg ml−1. Successful internalization and colocalization with lysosomal compartments was observed by confocal microscopy studies.


Nature Chemistry | 2018

Asymmetric transfer hydrogenation by synthetic catalysts in cancer cells

James P. C. Coverdale; Isolda Romero-Canelón; Carlos Sanchez-Cano; Guy J. Clarkson; Abraha Habtemariam; Martin Wills; Peter J. Sadler

Catalytic anticancer metallodrugs active at low doses could minimize side-effects, introduce novel mechanisms of action that combat resistance and widen the spectrum of anticancer-drug activity. Here we use highly stable chiral half-sandwich organometallic Os(II) arene sulfonyl diamine complexes, [Os(arene)(TsDPEN)] (TsDPEN, N-(p-toluenesulfonyl)-1,2-diphenylethylenediamine), to achieve a highly enantioselective reduction of pyruvate, a key intermediate in metabolic pathways. Reduction is shown both in aqueous model systems and in human cancer cells, with non-toxic concentrations of sodium formate used as a hydride source. The catalytic mechanism generates selectivity towards ovarian cancer cells versus non-cancerous fibroblasts (both ovarian and lung), which are commonly used as models of healthy proliferating cells. The formate precursor N-formylmethionine was explored as an alternative to formate in PC3 prostate cancer cells, which are known to overexpress a deformylase enzyme. Transfer-hydrogenation catalysts that generate reductive stress in cancer cells offer a new approach to cancer therapy. Intracellular asymmetric transfer hydrogenation catalysis using Os(II) complexes has now been demonstrated and offers a new approach for selectively killing cancer cells. Enantiomers of Os(II) arene catalysts can penetrate cell membranes enabling the reduction of pyruvate to D- or L-lactate using formate as a hydride source, with high enantioselectivity.


Biomacromolecules | 2018

Cyclic peptide–polymer nanotubes as efficient and highly potent drug delivery systems for organometallic anticancer complexes

Sophie C. Larnaudie; Johannes C. Brendel; Isolda Romero-Canelón; Carlos Sanchez-Cano; Sylvain Catrouillet; Joaquin Sanchis; James P. C. Coverdale; Ji Inn Song; Abraha Habtemariam; Peter J. Sadler; Katrina A. Jolliffe; Sébastien Perrier

Functional drug carrier systems have potential for increasing solubility and potency of drugs while reducing side effects. Complex polymeric materials, particularly anisotropic structures, are especially attractive due to their long circulation times. Here, we have conjugated cyclic peptides to the biocompatible polymer poly(2-hydroxypropyl methacrylamide) (pHPMA). The resulting conjugates were functionalized with organoiridium anticancer complexes. Small angle neutron scattering and static light scattering confirmed their self-assembly and elongated cylindrical shape. Drug-loaded nanotubes exhibited more potent antiproliferative activity toward human cancer cells than either free drug or the drug-loaded polymers, while the nanotubes themselves were nontoxic. Cellular accumulation studies revealed that the increased potency of the conjugate appears to be related to a more efficient mode of action rather than a higher cellular accumulation of iridium.


Journal of Inorganic Biochemistry | 2017

The potent anti-cancer activity of Dioclea lasiocarpa lectin

Ana C.S. Gondim; Isolda Romero-Canelón; Eduardo Henrique Silva Sousa; Claudia A. Blindauer; Jennifer S. Butler; María J. Romero; Carlos Sanchez-Cano; Bruno L. Sousa; Renata Pinheiro Chaves; Celso Shiniti Nagano; Benildo Sousa Cavada; Peter J. Sadler

The lectin DLasiL was isolated from seeds of the Dioclea lasiocarpa collected from the northeast coast of Brazil and characterized for the first time by mass spectrometry, DNA sequencing, inductively coupled plasma-mass spectrometry, electron paramagnetic resonance, and fluorescence spectroscopy. The structure of DLasiL lectin obtained by homology modelling suggested strong conservation of the dinuclear Ca/Mn and sugar-binding sites, and dependence of the solvent accessibility of tryptophan-88 on the oligomerisation state of the protein. DLasiL showed highly potent (low nanomolar) antiproliferative activity against several human carcinoma cell lines including A2780 (ovarian), A549 (lung), MCF-7 (breast) and PC3 (prostate), and was as, or more, potent than the lectins ConBr (Canavalia brasiliensis), ConM (Canavalia maritima) and DSclerL (Dioclea sclerocarpa) against A2780 and PC3 cells. Interestingly, DLasiL lectin caused a G2/M arrest in A2780 cells after 24h exposure, activating caspase 9 and delaying the on-set of apoptosis. Confocal microscopy showed that fluorescently-labelled DLasiL localized around the nuclei of A2780 cells at lectin doses of 0.5-2× IC50 and gave rise to enlarged nuclei and spreading of the cells at high doses. These data reveal the interesting antiproliferative activity of DLasiL lectin, and suggest that further investigations to explore the potential of DLasiL as a new anticancer agent are warranted.


Journal of Inorganic Biochemistry | 2017

Synthesis and characterization of oxidovanadium complexes as enzyme inhibitors targeting dipeptidyl peptidase IV

Ming-Jin Xie; Ming-rong Zhu; Chun-Mei Lu; Yi Jin; Li-Hui Gao; Ling Li; Jie Zhou; Fan-fang Li; Qi Hua Zhao; Hong-Ke Liu; Peter J. Sadler; Carlos Sanchez-Cano

Two oxidovanadium(IV) complexes carrying Schiff base ligands obtained from the condensation of 4,5-dichlorobenzene-1,2-diamine and salicylaldehyde derivatives were synthesised and characterised, including their X-ray crystallographic structures. They were evaluated as dipeptidyl peptidase IV (DPP-IV) inhibitors for the treatment of type 2 diabetes. These compounds were moderate inhibitors of DPP-IV, with IC50 values of ca. 40μM. In vivo tests showed that complexes 1 and 2 could lower significantly the level of glucose in the blood of alloxan-diabetic mice at doses of 22.5mgV·kg-1 and 29.6mgV·kg-1, respectively. Moreover, molecular modeling studies suggested that the oxidovanadium complexes 1 and 2 could fit well into the active-site cleft of the kinase domain of DPP-IV. To the best of our knowledge, this is the first report of vanadium complexes capable of inhibiting DPP-IV.


ACS Applied Materials & Interfaces | 2017

Sequence Control as a Powerful Tool for Improving the Selectivity of Antimicrobial Polymers

Agnès Kuroki; Parveen Sangwan; Yue Qu; Raoul Peltier; Carlos Sanchez-Cano; John Moat; Christopher G. Dowson; Elizabeth G. L. Williams; Katherine E. S. Locock; Matthias Hartlieb; Sébastien Perrier

Antimicrobial polymers appear as a promising alternative to tackle the current development of bacterial resistance against conventional antibiotics as they rely on bacterial membrane disruption. This study investigates the effect of segmentation of hydrophobic and cationic functionalities on antimicrobial polymers over their selectivity between bacteria and mammalian cells. Using RAFT technology, statistical, diblock, and highly segmented multiblock copolymers were synthesized in a controlled manner. Polymers were analyzed by HPLC, and the segmentation was found to have a significant influence on their overall hydrophobicity. In addition, the amount of incorporated cationic comonomer was varied to yield a small library of bioactive macromolecules. The antimicrobial properties of these compounds were probed against pathogenic bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis), and their biocompatibility was tested using hemolysis and erythrocyte aggregation assays, as well as mammalian cell viability assays. In all cases, diblock and multiblock copolymers were found to outperform statistical copolymers, and for polymers with a low content of cationic comonomer, the multiblock showed a tremendously increased selectivity for P. aeruginosa and S. epidermidis compared to its statistical and diblock analogue. This work highlights the remarkable effect of segmentation on both the physical properties of the materials as well as their interaction with biological systems. Due to the outstanding selectivity of multiblock copolymers toward certain bacteria strains, the presented materials are a promising platform for the treatment of infections and a valuable tool to combat antimicrobial resistance.


Macromolecular Bioscience | 2018

RAFT Emulsion Polymerization as a Platform to Generate Well-Defined Biocompatible Latex Nanoparticles

Pratik Gurnani; Carlos Sanchez-Cano; Kristin Abraham; Helena Xandri-Monje; Alexander B. Cook; Matthias Hartlieb; Francis Lévi; Robert Dallmann; Sébastien Perrier

Current approaches to generate core-shell nanoparticles for biomedical applications are limited by factors such as synthetic scalability and circulatory desorption of cytotoxic surfactants. Developments in controlled radical polymerization, particularly in dispersed states, represent a promising method of overcoming these challenges. In this work, well-defined PEGylated nanoparticles are synthesized using reversible addition fragmentation chain transfer emulsion polymerization to control particle size and surface composition and were further characterized with light scattering, electron microscopy, and size exclusion chromatography. Importantly, the nanoparticles are found to be tolerated both in vitro and in vivo, without the need for any purification after particle synthesis. Pharmacokinetic and biodistribution studies in mice, following intraperitoneal injection of the nanoparticles, reveal a long (>76 h) circulation time and accumulation in the liver.

Collaboration


Dive into the Carlos Sanchez-Cano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge