Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlotta Reni is active.

Publication


Featured researches published by Carlotta Reni.


Circulation | 2012

Role for Substance P–Based Nociceptive Signaling in Progenitor Cell Activation and Angiogenesis During Ischemia in Mice and in Human Subjects

Silvia Amadesi; Carlotta Reni; Rajesh Katare; Marco Meloni; Atsuhiko Oikawa; Antonio Paolo Beltrami; Elisa Avolio; Daniela Cesselli; Orazio Fortunato; Gaia Spinetti; Raimondo Ascione; Elisa Cangiano; Marco Valgimigli; Stephen P. Hunt; Costanza Emanueli; Paolo Madeddu

Background— Pain triggers a homeostatic alarm reaction to injury. It remains unknown, however, whether nociceptive signaling activated by ischemia is relevant for progenitor cells (PC) release from bone marrow. To this end, we investigated the role of the neuropeptide substance P (SP) and cognate neurokinin 1 (NK1) nociceptor in PC activation and angiogenesis during ischemia in mice and in human subjects. Methods and Results— The mouse bone marrow contains sensory fibers and PC that express SP. Moreover, SP-induced migration provides enrichment for PC that express NK1 and promote reparative angiogenesis after transplantation in a mouse model of limb ischemia. Acute myocardial infarction and limb ischemia increase SP levels in peripheral blood, decrease SP levels in bone marrow, and stimulate the mobilization of NK1-expressing PC, with these effects being abrogated by systemic administration of the opioid receptor agonist morphine. Moreover, bone marrow reconstitution with NK1-knockout cells results in depressed PC mobilization, delayed blood flow recovery, and reduced neovascularization after ischemia. We next asked whether SP is instrumental to PC mobilization and homing in patients with ischemia. Human PC express NK1, and SP-induced migration provides enrichment for proangiogenic PC. Patients with acute myocardial infarction show high circulating levels of SP and NK1-positive cells that coexpress PC antigens, such as CD34, KDR, and CXCR4. Moreover, NK1-expressing PC are abundant in infarcted hearts but not in hearts that developed an infarct after transplantation. Conclusions— Our data highlight the role of SP in reparative neovascularization. Nociceptive signaling may represent a novel target of regenerative medicine.


Circulation Research | 2015

Combined Intramyocardial Delivery of Human Pericytes and Cardiac Stem Cells Additively Improves the Healing of Mouse Infarcted Hearts Through Stimulation of Vascular and Muscular Repair

Elisa Avolio; Marco Meloni; Helen L Spencer; Federica Riu; Rajesh Katare; Giuseppe Mangialardi; Atsuhiko Oikawa; Iker Rodriguez-Arabaolaza; Zexu Dang; Kathryn Mitchell; Carlotta Reni; Valeria Vincenza Alvino; Jonathan Rowlinson; Ugolino Livi; Daniela Cesselli; Gianni D. Angelini; Costanza Emanueli; Antonio Paolo Beltrami; Paolo Madeddu

RATIONALE Optimization of cell therapy for cardiac repair may require the association of different cell populations with complementary activities. OBJECTIVE Compare the reparative potential of saphenous vein-derived pericytes (SVPs) with that of cardiac stem cells (CSCs) in a model of myocardial infarction, and investigate whether combined cell transplantation provides further improvements. METHODS AND RESULTS SVPs and CSCs were isolated from vein leftovers of coronary artery bypass graft surgery and discarded atrial specimens of transplanted hearts, respectively. Single or dual cell therapy (300 000 cells of each type per heart) was tested in infarcted SCID (severe combined immunodeficiency)-Beige mice. SVPs and CSCs alone improved cardiac contractility as assessed by echocardiography at 14 days post myocardial infarction. The effect was maintained, although attenuated at 42 days. At histological level, SVPs and CSCs similarly inhibited infarct size and interstitial fibrosis, SVPs were superior in inducing angiogenesis and CSCs in promoting cardiomyocyte proliferation and recruitment of endogenous stem cells. The combination of cells additively reduced the infarct size and promoted vascular proliferation and arteriogenesis, but did not surpass single therapies with regard to contractility indexes. SVPs and CSCs secrete similar amounts of hepatocyte growth factor, vascular endothelial growth factor, fibroblast growth factor, stem cell factor, and stromal cell-derived factor-1, whereas SVPs release higher quantities of angiopoietins and microRNA-132. Coculture of the 2 cell populations results in competitive as well as enhancing paracrine activities. In particular, the release of stromal cell-derived factor-1 was synergistically augmented along with downregulation of stromal cell-derived factor-1-degrading enzyme dipeptidyl peptidase 4. CONCLUSIONS Combinatory therapy with SVPs and CSCs may complementarily help the repair of infarcted hearts.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Perivascular Delivery of Encapsulated Mesenchymal Stem Cells Improves Postischemic Angiogenesis Via Paracrine Activation of VEGF-A

Rajesh Katare; Federica Riu; Jonathan Rowlinson; Andrew L. Lewis; Rachel R. Holden; Marco Meloni; Carlotta Reni; Christine Wallrapp; Costanza Emanueli; Paolo Madeddu

Objective—To test the therapeutic activity of perivascular transplantation of encapsulated human mesenchymal stem cells (MSCs) in an immunocompetent mouse model of limb ischemia. Approach and Results—CD1 mice underwent unilateral limb ischemia, followed by randomized treatment with vehicle, alginate microbeads (MBs), MB-encapsulated MSCs (MB-MSCs), or MB-MSCs engineered with glucagon-like peptide-1. Treatments were applied directly in the perivascular space around the femoral artery. Laser Doppler and fluorescent microsphere assessment of blood flow showed a marked improvement of perfusion in the MB-MSCs and MB-MSCs engineered with glucagon-like peptide-1 groups, which was associated with increased foot salvage particularly in MB-MSCs engineered with glucagon-like peptide-1–treated mice. Histological analysis revealed increased capillary and arteriole density in limb muscles of the 2 MSC groups. Furthermore, MB-MSCs engineered with glucagon-like peptide-1 and, to a lesser extent, MB-MSC treatment increased functional arterial collaterals alongside the femoral artery occlusion. Analysis of expressional changes in ischemic muscles showed that MB-MSC transplantation activates a proangiogenic signaling pathway centered on vascular endothelial growth factor A. In contrast, intramuscular MB-MSCs caused inflammatory reaction, but no improvement of reparative vascularization. Importantly, nonencapsulated MSCs were ineffective either by intramuscular or perivascular route. Conclusions—Perivascular delivery of encapsulated MSCs helps postischemic reperfusion. This novel biological bypass method might be useful in patients not amenable to conventional revascularization approaches.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Diabetes causes bone marrow endothelial barrier dysfunction by activation of the RhoA-Rho-associated kinase signaling pathway.

Giuseppe Mangialardi; Rajesh Katare; Atsuhiko Oikawa; Marco Meloni; Carlotta Reni; Costanza Emanueli; Paolo Madeddu

Objective—Diabetes mellitus causes bone marrow (BM) microangiopathy. This study aimed to investigate the mechanisms responsible for BM endothelial dysfunction in diabetes mellitus. Methods and Results—The analysis of differentially expressed transcripts in BM endothelial cells (BMECs) from type-1 diabetic and nondiabetic mice showed an effect of diabetes mellitus on signaling pathways controlling cell death, migration, and cytoskeletal rearrangement. Type-1 diabetic-BMECs displayed high reactive oxygen species levels, increased expression and activity of RhoA and its associated protein kinases Rho-associated kinase 1/Rho-associated kinase 2, and reduced Akt phosphorylation/activity. Likewise, diabetes mellitus impaired Akt-related BMEC functions, such as migration, network formation, and angiocrine factor-releasing activity, and increased vascular permeability. Moreover, high glucose disrupted BMEC contacts through Src tyrosine kinase phosphorylation of vascular endothelial cadherin. These alterations were prevented by constitutively active Akt (myristoylated Akt), Rho-associated kinase inhibitor Y-27632, and Src inhibitors. Insulin replacement restored BMEC abundance, as assessed by flow cytometry analysis of the endothelial marker MECA32, and endothelial barrier function in BM of type-1 diabetic mice. Conclusion—Redox-dependent activation of RhoA/Rho-associated kinase and Src/vascular endothelial cadherin signaling pathways, together with Akt inactivation, contribute to endothelial dysfunction in diabetic BM. Metabolic control is crucial for maintenance of endothelial cell homeostasis and endothelial barrier function in BM of diabetic mice.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2015

Epigenetic Profile of Human Adventitial Progenitor Cells Correlates With Therapeutic Outcomes in a Mouse Model of Limb Ischemia

Miriam Gubernator; Sadie C. Slater; Helen L Spencer; Inmaculada Spiteri; Andrea Sottoriva; Federica Riu; Jonathan Rowlinson; Elisa Avolio; Rajesh Katare; Giuseppe Mangialardi; Atsuhiko Oikawa; Carlotta Reni; Paola Campagnolo; Gaia Spinetti; Anestis Touloumis; Simon Tavaré; Francesca Prandi; Maurizio Pesce; Manuela Hofner; Vierlinger Klemens; Costanza Emanueli; Gianni D. Angelini; Paolo Madeddu

Objective— We investigated the association between the functional, epigenetic, and expressional profile of human adventitial progenitor cells (APCs) and therapeutic activity in a model of limb ischemia. Approach and Results— Antigenic and functional features were analyzed throughout passaging in 15 saphenous vein (SV)–derived APC lines, of which 10 from SV leftovers of coronary artery bypass graft surgery and 5 from varicose SV removal. Moreover, 5 SV-APC lines were transplanted (8×105 cells, IM) in mice with limb ischemia. Blood flow and capillary and arteriole density were correlated with functional characteristics and DNA methylation/expressional markers of transplanted cells. We report successful expansion of tested lines, which reached the therapeutic target of 30 to 50 million cells in ≈10 weeks. Typical antigenic profile, viability, and migratory and proangiogenic activities were conserved through passaging, with low levels of replicative senescence. In vivo, SV-APC transplantation improved blood flow recovery and revascularization of ischemic limbs. Whole genome screening showed an association between DNA methylation at the promoter or gene body level and microvascular density and to a lesser extent with blood flow recovery. Expressional studies highlighted the implication of an angiogenic network centered on the vascular endothelial growth factor receptor as a predictor of microvascular outcomes. FLT-1 gene silencing in SV-APCs remarkably reduced their ability to form tubes in vitro and support tube formation by human umbilical vein endothelial cells, thus confirming the importance of this signaling in SV-APC angiogenic function. Conclusions— DNA methylation landscape illustrates different therapeutic activities of human APCs. Epigenetic screening may help identify determinants of therapeutic vasculogenesis in ischemic disease.


Pharmacology & Therapeutics | 2017

Pericytes, an overlooked player in vascular pathobiology

David Ferland-McCollough; Sadie C. Slater; Jai Richard; Carlotta Reni; Giuseppe Mangialardi

Pericytes are a heterogeneous population of cells located in the blood vessel wall. They were first identified in the 19th century by Rouget, however their biological role and potential for drug targeting have taken time to be recognised. Isolation of pericytes from several different tissues has allowed a better phenotypic and functional characterization. These findings revealed a tissue-specific, multi-functional group of cells with multilineage potential. Given this emerging evidence, pericytes have acquired specific roles in pathobiological events in vascular diseases. In this review article, we will provide a compelling overview of the main diseases in which pericytes are involved, from well-established mechanisms to the latest findings. Pericyte involvement in diabetes and cancer will be discussed extensively. In the last part of the article we will review therapeutic approaches for these diseases in light of the recently acquired knowledge. To unravel pericyte-related vascular pathobiological events is pivotal not only for more tailored treatments of disease but also to establish pericytes as a therapeutic tool.


Antioxidants & Redox Signaling | 2014

Increased antioxidant defense mechanism in human adventitia-derived progenitor cells is associated with therapeutic benefit in ischemia.

Dominga Iacobazzi; Giuseppe Mangialardi; Miriam Gubernator; Manuela Hofner; Matthias Wielscher; Klemens Vierlinger; Carlotta Reni; Atsuhiko Oikawa; Gaia Spinetti; Rosa Vono; Elena Sangalli; Monica Montagnani; Paolo Madeddu

AIMS Vascular wall-resident progenitor cells hold great promise for cardiovascular regenerative therapy. This study evaluates the impact of oxidative stress on the viability and functionality of adventitia-derived progenitor cells (APCs) from vein remnants of coronary artery bypass graft (CABG) surgery. We also investigated the antioxidant enzymes implicated in the resistance of APCs to oxidative stress-induced damage and the effect of interfering with one of them, the extracellular superoxide dismutase (EC-SOD/SOD3), on APC therapeutic action in a model of peripheral ischemia. RESULTS After exposure to hydrogen peroxide, APCs undergo apoptosis to a smaller extent than endothelial cells (ECs). This was attributed to up-regulation of antioxidant enzymes, especially SODs and catalase. Pharmacological inhibition of SODs increases reactive oxygen species (ROS) levels in APCs and impairs their survival. Likewise, APC differentiation results in SOD down-regulation and ROS-induced apoptosis. Oxidative stress increases APC migratory activity, while being inhibitory for ECs. In addition, oxidative stress does not impair APC capacity to promote angiogenesis in vitro. In a mouse limb ischemia model, an injection of naïve APCs, but not SOD3-silenced APCs, helps perfusion recovery and neovascularization, thus underlining the importance of this soluble isoform in protection from ischemia. INNOVATION This study newly demonstrates that APCs are endowed with enhanced detoxifier and antioxidant systems and that SOD3 plays an important role in their therapeutic activity in ischemia. CONCLUSIONS APCs from vein remnants of CABG patients express antioxidant defense mechanisms, which enable them to resist stress. These properties highlight the potential of APCs in cardiovascular regenerative medicine.


Antioxidants & Redox Signaling | 2014

Reactive Oxygen Species Adversely Impacts Bone Marrow Microenvironment in Diabetes

Giuseppe Mangialardi; Gaia Spinetti; Carlotta Reni; Paolo Madeddu

UNLABELLED Significance: Patients with diabetes mellitus suffer an excess of cardiovascular complications and recover worse from them as compared with their nondiabetic peers. It is well known that microangiopathy is the cause of renal damage, blindness, and heart attacks in patients with diabetes. This review highlights molecular deficits in stem cells and a supporting microenvironment, which can be traced back to oxidative stress and ultimately reduce stem cells therapeutic potential in diabetic patients. RECENT ADVANCES New research has shown that increased oxidative stress contributes to inducing microangiopathy in bone marrow (BM), the tissue contained inside the bones and the main source of stem cells. These precious cells not only replace old blood cells but also exert an important reparative function after acute injuries and heart attacks. CRITICAL ISSUES The starvation of BM as a consequence of microangiopathy can lead to a less efficient healing in diabetic patients with ischemic complications. Furthermore, stem cells from a patients BM are the most used in regenerative medicine trials to mend hearts damaged by heart attacks. FUTURE DIRECTIONS A deeper understanding of redox signaling in BM stem cells will lead to new modalities for preserving local and systemic homeostasis and to more effective treatments of diabetic cardiovascular complications.


Endocrine‚ Metabolic & Immune Disorders-Drug Targets | 2012

Bone marrow microenvironment: a newly recognized target for diabetes-induced cellular damage.

Giuseppe Mangialardi; Atsuhiko Oikawa; Carlotta Reni; Paolo Madeddu

Diabetes mellitus is considered a cardiovascular disease owing to its prevalent association with cardiovascular morbidity and mortality. Cardiovascular events are not only more frequent but also complicated with more severe outcomes in diabetic patients as compared with non-diabetic patients. One mechanism accounting for this difference consists of the impairment of the regenerative cellular machinery, which contributes to tissue healing. Recent evidence indicates the contribution of resident progenitor cells in post-ischemic tissue remodeling. In addition, a wide spectrum of cells from distant sources, including the bone marrow, is attracted and home to the healing tissue. Diabetes affects the process of mobilization and recruitment as well as intrinsic functional properties of bone marrow-derived progenitor cells. This review highlights current evidence for diabetes-induced damage of bone marrow hematopoietic progenitor cells in the endosteal and vascular niches.


Biofabrication | 2016

Design, fabrication and perivascular implantation of bioactive scaffolds engineered with human adventitial progenitor cells for stimulation of arteriogenesis in peripheral ischemia

M Carrabba; C. De Maria; Atsuhiko Oikawa; Carlotta Reni; Iker Rodriguez-Arabaolaza; Helen L Spencer; Sadie C. Slater; Elisa Avolio; Zexu Dang; Gaia Spinetti; Paolo Madeddu; Giovanni Vozzi

Cell therapy represents a promising option for revascularization of ischemic tissues. However, injection of dispersed cells is not optimal to ensure precise homing into the recipients vasculature. Implantation of cell-engineered scaffolds around the occluded artery may obviate these limitations. Here, we employed the synthetic polymer polycaprolactone for fabrication of 3D woodpile- or channel-shaped scaffolds by a computer-assisted writing system (pressure assisted micro-syringe square), followed by deposition of gelatin (GL) nanofibers by electro-spinning. Scaffolds were then cross-linked with natural (genipin, GP) or synthetic (3-glycidyloxy-propyl-trimethoxy-silane, GPTMS) agents to improve mechanical properties and durability in vivo. The composite scaffolds were next fixed by crown inserts in each well of a multi-well plate and seeded with adventitial progenitor cells (APCs, 3 cell lines in duplicate), which were isolated/expanded from human saphenous vein surgical leftovers. Cell density, alignment, proliferation and viability were assessed 1 week later. Data from in vitro assays showed channel-shaped/GPTMS-crosslinked scaffolds confer APCs with best alignment and survival/growth characteristics. Based on these results, channel-shaped/GPTMS-crosslinked scaffolds with or without APCs were implanted around the femoral artery of mice with unilateral limb ischemia. Perivascular implantation of scaffolds accelerated limb blood flow recovery, as assessed by laser Doppler or fluorescent microspheres, and increased arterial collaterals around the femoral artery and in limb muscles compared with non-implanted controls. Blood flow recovery and perivascular arteriogenesis were additionally incremented by APC-engineered scaffolds. In conclusion, perivascular application of human APC-engineered scaffolds may represent a novel option for targeted delivery of therapeutic cells in patients with critical limb ischemia.

Collaboration


Dive into the Carlotta Reni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gaia Spinetti

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge