Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Caporali is active.

Publication


Featured researches published by Andrea Caporali.


Oxidative Medicine and Cellular Longevity | 2016

ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases

Pierpaola Davalli; Tijana Mitić; Andrea Caporali; Angela Lauriola; Domenico D'Arca

The aging process worsens the human body functions at multiple levels, thus causing its gradual decrease to resist stress, damage, and disease. Besides changes in gene expression and metabolic control, the aging rate has been associated with the production of high levels of Reactive Oxygen Species (ROS) and/or Reactive Nitrosative Species (RNS). Specific increases of ROS level have been demonstrated as potentially critical for induction and maintenance of cell senescence process. Causal connection between ROS, aging, age-related pathologies, and cell senescence is studied intensely. Senescent cells have been proposed as a target for interventions to delay the aging and its related diseases or to improve the diseases treatment. Therapeutic interventions towards senescent cells might allow restoring the health and curing the diseases that share basal processes, rather than curing each disease in separate and symptomatic way. Here, we review observations on ROS ability of inducing cell senescence through novel mechanisms that underpin aging processes. Particular emphasis is addressed to the novel mechanisms of ROS involvement in epigenetic regulation of cell senescence and aging, with the aim to individuate specific pathways, which might promote healthy lifespan and improve aging.


Scientific Reports | 2015

Comprehensive microRNA profiling in acetaminophen toxicity identifies novel circulating biomarkers for human liver and kidney injury.

A. D. B. Vliegenthart; J. M. Shaffer; J. I. Clarke; L. E. J. Peeters; Andrea Caporali; D. N. Bateman; D. M. Wood; P. I. Dargan; Darren G. Craig; Joanna Moore; Alexandra Thompson; Neil C. Henderson; David J. Webb; J. Sharkey; Daniel J. Antoine; B. K. Park; Matthew A. Bailey; E. Lader; Kenneth J. Simpson; James W. Dear

Our objective was to identify microRNA (miRNA) biomarkers of drug-induced liver and kidney injury by profiling the circulating miRNome in patients with acetaminophen overdose. Plasma miRNAs were quantified in age- and sex-matched overdose patients with (N = 27) and without (N = 27) organ injury (APAP-TOX and APAP-no TOX, respectively). Classifier miRNAs were tested in a separate cohort (N = 81). miRNA specificity was determined in non-acetaminophen liver injury and murine models. Sensitivity was tested by stratification of patients at hospital presentation (N = 67). From 1809 miRNAs, 75 were 3-fold or more increased and 46 were 3-fold or more decreased with APAP-TOX. A 16 miRNA classifier model accurately diagnosed APAP-TOX in the test cohort. In humans, the miRNAs with the largest increase (miR-122-5p, miR-885-5p, miR-151a-3p) and the highest rank in the classifier model (miR-382-5p) accurately reported non-acetaminophen liver injury and were unaffected by kidney injury. miR-122-5p was more sensitive than ALT for reporting liver injury at hospital presentation, especially combined with miR-483-3p. A miRNA panel was associated with human kidney dysfunction. In mice, miR-122-5p, miR-151a-3p and miR-382-5p specifically reported APAP toxicity - being unaffected by drug-induced kidney injury. Profiling of acetaminophen toxicity identified multiple miRNAs that report acute liver injury and potential biomarkers of drug-induced kidney injury.


Journal of The American Society of Nephrology | 2016

Vasopressin Regulates Extracellular Vesicle Uptake by Kidney Collecting Duct Cells

Wilna Oosthuyzen; Kathleen M. Scullion; Jessica R. Ivy; Emma E. Morrison; Robert W. Hunter; Philip J. Starkey Lewis; Eoghan O'Duibhir; Jonathan M. Street; Andrea Caporali; Christopher D. Gregory; Stuart J. Forbes; David J. Webb; Matthew A. Bailey; James W. Dear

Extracellular vesicles (ECVs) facilitate intercellular communication along the nephron, with the potential to change the function of the recipient cell. However, it is not known whether this is a regulated process analogous to other signaling systems. We investigated the potential hormonal regulation of ECV transfer and report that desmopressin, a vasopressin analogue, stimulated the uptake of fluorescently loaded ECVs into a kidney collecting duct cell line (mCCDC11) and into primary cells. Exposure of mCCDC11 cells to ECVs isolated from cells overexpressing microRNA-503 led to downregulated expression of microRNA-503 target genes, but only in the presence of desmopressin. Mechanistically, ECV entry into mCCDC11 cells required cAMP production, was reduced by inhibiting dynamin, and was selective for ECVs from kidney tubular cells. In vivo, we measured the urinary excretion and tissue uptake of fluorescently loaded ECVs delivered systemically to mice before and after administration of the vasopressin V2 receptor antagonist tolvaptan. In control-treated mice, we recovered 2.5% of administered ECVs in the urine; tolvaptan increased recovery five-fold and reduced ECV deposition in kidney tissue. Furthermore, in a patient with central diabetes insipidus, desmopressin reduced the excretion of ECVs derived from glomerular and proximal tubular cells. These data are consistent with vasopressin-regulated uptake of ECVs in vivo We conclude that ECV uptake is a specific and regulated process. Physiologically, ECVs are a new mechanism of intercellular communication; therapeutically, ECVs may be a vehicle by which RNA therapy could be targeted to specific cells for the treatment of kidney disease.


Nanomedicine: Nanotechnology, Biology and Medicine | 2016

Regulation of angiogenesis through the efficient delivery of microRNAs into endothelial cells using polyamine-coated carbon nanotubes

Andrea Masotti; Mark R. Miller; Antonella Celluzzi; Lorraine Rose; F. Micciulla; Patrick W. F. Hadoke; S. Bellucci; Andrea Caporali

MicroRNAs (miRNAs) directly regulate gene expression at a post-transcriptional level and represent an attractive therapeutic target for a wide range of diseases. Here, we report a novel strategy for delivering miRNAs to endothelial cells (ECs) to regulate angiogenesis, using polymer functionalized carbon nanotubes (CNTs). CNTs were coated with two different polymers, polyethyleneimine (PEI) or polyamidoamine dendrimer (PAMAM), followed by conjugation of miR-503 oligonucleotides as recognized regulators of angiogenesis. We demonstrated a reduced toxicity for both polymer-coated CNTs, compared with pristine CNTs or polymers alone. Moreover, polymer-coated CNT stabilized miR-503 oligonucleotides and allowed their efficient delivery to ECs. The functionality of PAMAM-CNT-miR-503 complexes was further demonstrated in ECs through regulation of target genes, cell proliferation and angiogenic sprouting and in a mouse model of angiogenesis. This comprehensive series of experiments demonstrates that the use of polyamine-functionalized CNTs to deliver miRNAs is a novel and effective means to regulate angiogenesis.


Molecular Therapy | 2016

The Retinoid Agonist Tazarotene Promotes Angiogenesis and Wound Healing

Ayman Al Haj Zen; Dorota A Nawrot; Alison Howarth; Andrea Caporali; Daniel Ebner; Aude Vernet; Jürgen E. Schneider; Shoumo Bhattacharya

Therapeutic angiogenesis is a major goal of regenerative medicine, but no clinically approved small molecule exists that enhances new blood vessel formation. Here we show, using a phenotype-driven high-content imaging screen of an annotated chemical library of 1,280 bioactive small molecules, that the retinoid agonist Tazarotene, enhances in vitro angiogenesis, promoting branching morphogenesis, and tubule remodeling. The proangiogenic phenotype is mediated by retinoic acid receptor but not retinoic X receptor activation, and is characterized by secretion of the proangiogenic factors hepatocyte growth factor, vascular endothelial growth factor, plasminogen activator, urokinase and placental growth factor, and reduced secretion of the antiangiogenic factor pentraxin-3 from adjacent fibroblasts. In vivo, Tazarotene enhanced the growth of mature and functional microvessels in Matrigel implants and wound healing models, and increased blood flow. Notably, in ear punch wound healing model, Tazarotene promoted tissue repair characterized by rapid ear punch closure with normal-appearing skin containing new hair follicles, and maturing collagen fibers. Our study suggests that Tazarotene, an FDA-approved small molecule, could be potentially exploited for therapeutic applications in neovascularization and wound healing.


Scientific Reports | 2017

The adipokine leptin modulates adventitial pericyte functions by autocrine and paracrine signalling

Federica Riu; Sadie C. Slater; Eva Jover Garcia; Iker Rodriguez-Arabaolaza; Valeria Vincenza Alvino; Elisa Avolio; Giuseppe Mangialardi; Andrea Cordaro; Simon Satchell; Carlo Zebele; Andrea Caporali; Gianni D. Angelini; Paolo Madeddu

Transplantation of adventitial pericytes (APCs) improves recovery from tissue ischemia in preclinical animal models by still unknown mechanisms. This study investigates the role of the adipokine leptin (LEP) in the regulation of human APC biological functions. Transcriptomic analysis of APCs showed components of the LEP signalling pathway are modulated by hypoxia. Kinetic studies indicate cultured APCs release high amounts of immunoreactive LEP following exposure to hypoxia, continuing upon return to normoxia. Secreted LEP activates an autocrine/paracrine loop through binding to the LEP receptor (LEPR) and induction of STAT3 phosphorylation. Titration studies using recombinant LEP and siRNA knockdown of LEP or LEPR demonstrate the adipokine exerts important regulatory roles in APC growth, survival, migration and promotion of endothelial network formation. Heterogeneity in LEP expression and secretion may influence the reparative proficiency of APC therapy. Accordingly, the levels of LEP secretion predict the microvascular outcome of APCs transplantation in a mouse limb ischemia model. Moreover, we found that the expression of the Lepr gene is upregulated on resident vascular cells from murine ischemic muscles, thus providing a permissive milieu to transplanted LEP-expressing APCs. Results highlight a new mechanism responsible for APC adaptation to hypoxia and instrumental to vascular repair.


Molecular Therapy | 2018

MicroRNA-148b Targets the TGF-β Pathway to Regulate Angiogenesis and Endothelial-to-Mesenchymal Transition during Skin Wound Healing

Vladislav Miscianinov; Andrea Martello; Lorraine Rose; Elisa Parish; Ben Cathcart; Tijana Mitić; Gillian A. Gray; Marco Meloni; Ayman Al Haj Zen; Andrea Caporali

Transforming growth factor beta (TGF-β) is crucial for regulation of the endothelial cell (EC) homeostasis. Perturbation of TGF-β signaling leads to pathological conditions in the vasculature, causing cardiovascular disease and fibrotic disorders. The TGF-β pathway is critical in endothelial-to-mesenchymal transition (EndMT), but a gap remains in our understanding of the regulation of TGF-β and related signaling in the endothelium. This study applied a gain- and loss-of function approach and an in vivo model of skin wound healing to demonstrate that miR-148b regulates TGF-β signaling and has a key role in EndMT, targeting TGFB2 and SMAD2. Overexpression of miR-148b increased EC migration, proliferation, and angiogenesis, whereas its inhibition promoted EndMT. Cytokine challenge decreased miR-148b levels in ECs while promoting EndMT through the regulation of SMAD2. Finally, in a mouse model of skin wound healing, delivery of miR-148b mimics promoted wound vascularization and accelerated closure. In contrast, inhibition of miR-148b enhanced EndMT in wounds, resulting in impaired wound closure that was reversed by SMAD2 silencing. Together, these results demonstrate for the first time that miR-148b is a key factor controlling EndMT and vascularization. This opens new avenues for therapeutic application of miR-148b in vascular and tissue repair.


Cardiovascular Research | 2018

Future directions for therapeutic strategies in post-ischaemic vascularization: a position paper from European Society of Cardiology Working Group on Atherosclerosis and Vascular Biology

Andrea Caporali; Magnus Bäck; Mat J.A.P. Daemen; Imo E. Hoefer; Elizabeth A.V. Jones; Esther Lutgens; Christian M. Matter; Marie-Luce Bochaton-Piallat; Arndt F. Siekmann; Judith C. Sluimer; Sabine Steffens; José Tuñón; Cécile Vindis; Jolanda J. Wentzel; Seppo Ylä-Herttuala; Paul C. Evans

Modulation of vessel growth holds great promise for treatment of cardiovascular disease. Strategies to promote vascularization can potentially restore function in ischaemic tissues. On the other hand, plaque neovascularization has been shown to associate with vulnerable plaque phenotypes and adverse events. The current lack of clinical success in regulating vascularization illustrates the complexity of the vascularization process, which involves a delicate balance between pro- and anti-angiogenic regulators and effectors. This is compounded by limitations in the models used to study vascularization that do not reflect the eventual clinical target population. Nevertheless, there is a large body of evidence that validate the importance of angiogenesis as a therapeutic concept. The overall aim of this Position Paper of the ESC Working Group of Atherosclerosis and Vascular biology is to provide guidance for the next steps to be taken from pre-clinical studies on vascularization towards clinical application. To this end, the current state of knowledge in terms of therapeutic strategies for targeting vascularization in post-ischaemic disease is reviewed and discussed. A consensus statement is provided on how to optimize vascularization studies for the identification of suitable targets, the use of animal models of disease, and the analysis of novel delivery methods.


Molecular therapy. Nucleic acids | 2018

Phenotypic miRNA Screen Identifies miR-26b to Promote the Growth and Survival of Endothelial Cells

Andrea Martello; David Mellis; Marco Meloni; Alison Howarth; Daniel Ebner; Andrea Caporali; Ayman Al Haj Zen

Endothelial cell (EC) proliferation is a crucial event in physiological and pathological angiogenesis. MicroRNAs (miRNAs) have emerged as important modulators of the angiogenic switch. Here we conducted high-content screening of a human miRNA mimic library to identify novel regulators of EC growth systematically. Several miRNAs were nominated that enhanced or inhibited EC growth. Of these, we focused on miR-26b, which is a conserved candidate and expressed in multiple human EC types. miR-26b overexpression enhanced EC proliferation, migration, and tube formation, while inhibition of miR-26b suppressed the proliferative and angiogenic capacity of ECs. A combinatory functional small interfering RNA (siRNA) screening of 48 predicted gene targets revealed that miR-26b enhanced EC growth and survival through inhibiting PTEN expression. Local administration of miR-26b mimics promoted the growth of new microvessels in the Matrigel plug model. In the mouse model of hindlimb ischemia, miR-26b was found to be downregulated in endothelium in the first week following ischemia, and local overexpression of miR-26b improved the survival of capillaries and muscle fibers in ischemic muscles. Our findings suggest that miR-26b enhances EC proliferation, survival, and angiogenesis. miR-26b is a potential target for developing novel pro-angiogenic therapeutics in ischemic disease.


Biochemical Society Transactions | 2017

MicroRNA-based therapeutics in cardiovascular disease: screening and delivery to the target

David Mellis; Andrea Caporali

Collaboration


Dive into the Andrea Caporali's collaboration.

Top Co-Authors

Avatar

Ayman Al Haj Zen

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Webb

British Heart Foundation

View shared research outputs
Top Co-Authors

Avatar

David Mellis

British Heart Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lorraine Rose

British Heart Foundation

View shared research outputs
Researchain Logo
Decentralizing Knowledge