Carme Cascante
University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carme Cascante.
Potential Analysis | 2002
Carme Cascante; Joaquin M. Ortega; Igor Verbitsky
AbstractWe extend Th. Wolffs inequality to a general class of radially decreasing convolution kernels. As an application we obtain characterizations of nonnegative Borel measures μ on Rn such that the trace inequality
Journal of The London Mathematical Society-second Series | 2006
Carme Cascante; Joaquin M. Ortega; Igor Verbitsky
Journal of Functional Analysis | 2003
Carme Cascante; Joaquin M. Ortega
\parallel {\kern 1pt} T_K f{\kern 1pt} \parallel _{L^q ({\text{d}}\mu )} \;\; \leqslant \;\;C\parallel {\kern 1pt} f{\kern 1pt} \parallel _{L^p ({\text{d}}x)}
Nagoya Mathematical Journal | 2007
Carme Cascante; Joaquin M. Ortega
Canadian Journal of Mathematics | 1997
Carme Cascante; Joaquin M. Ortega
holds for every f in Lp(dx).
Mathematika | 2017
Carme Cascante; Joaquin M. Ortega
We give necessary and sufficient conditions in order that inequalities of the type \[ \| T_K f\|_{L^q(d\mu)}\leq C \|f\|_{L^p(d\sigma)}, \quad f \in L^p(d\sigma), \] hold for a class of integral operators
Canadian Journal of Mathematics | 2016
Carme Cascante; Joan Fàbrega; Joaquin M. Ortega
T_K f(x) = \int_{R^n} K(x,y) f(y)\,d \sigma(y)
Integral Equations and Operator Theory | 2011
Carme Cascante; Joan Fàbrega; Daniel Pascuas
with nonnegative kernels, and measures
Archive | 1989
Carme Cascante
d \mu
Canadian Journal of Mathematics | 1995
Carme Cascante; Joaquin M. Ortega
and