Joaquin M. Ortega
University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joaquin M. Ortega.
Potential Analysis | 2002
Carme Cascante; Joaquin M. Ortega; Igor Verbitsky
AbstractWe extend Th. Wolffs inequality to a general class of radially decreasing convolution kernels. As an application we obtain characterizations of nonnegative Borel measures μ on Rn such that the trace inequality
Journal of The London Mathematical Society-second Series | 2006
Carme Cascante; Joaquin M. Ortega; Igor Verbitsky
Journal of Functional Analysis | 2003
Carme Cascante; Joaquin M. Ortega
\parallel {\kern 1pt} T_K f{\kern 1pt} \parallel _{L^q ({\text{d}}\mu )} \;\; \leqslant \;\;C\parallel {\kern 1pt} f{\kern 1pt} \parallel _{L^p ({\text{d}}x)}
Nagoya Mathematical Journal | 2007
Carme Cascante; Joaquin M. Ortega
Canadian Journal of Mathematics | 1997
Carme Cascante; Joaquin M. Ortega
holds for every f in Lp(dx).
Mathematika | 2017
Carme Cascante; Joaquin M. Ortega
We give necessary and sufficient conditions in order that inequalities of the type \[ \| T_K f\|_{L^q(d\mu)}\leq C \|f\|_{L^p(d\sigma)}, \quad f \in L^p(d\sigma), \] hold for a class of integral operators
Canadian Journal of Mathematics | 2016
Carme Cascante; Joan Fàbrega; Joaquin M. Ortega
T_K f(x) = \int_{R^n} K(x,y) f(y)\,d \sigma(y)
Annales de l'Institut Fourier | 1996
Joaquin M. Ortega; Joan Fàbrega
with nonnegative kernels, and measures
Mathematische Zeitschrift | 2000
Joan Fàbrega; Joaquin M. Ortega
d \mu
Canadian Journal of Mathematics | 1995
Carme Cascante; Joaquin M. Ortega
and