Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carmela Mannarelli is active.

Publication


Featured researches published by Carmela Mannarelli.


Leukemia | 2013

Mutations and prognosis in primary myelofibrosis

Alessandro M. Vannucchi; Terra L. Lasho; Paola Guglielmelli; Flavia Biamonte; Animesh Pardanani; Arturo Pereira; Christy Finke; Joannah Score; Naseema Gangat; Carmela Mannarelli; Rhett P. Ketterling; Giada Rotunno; Ryan A. Knudson; Maria Chiara Susini; Rebecca R. Laborde; Ambra Spolverini; Alessandro Pancrazzi; Lisa Pieri; Rossella Manfredini; Enrico Tagliafico; Roberta Zini; Amy V. Jones; Katerina Zoi; Andreas Reiter; Andrew S Duncombe; Daniela Pietra; Elisa Rumi; Francisco Cervantes; Giovanni Barosi; M Cazzola

Patient outcome in primary myelofibrosis (PMF) is significantly influenced by karyotype. We studied 879 PMF patients to determine the individual and combinatorial prognostic relevance of somatic mutations. Analysis was performed in 483 European patients and the seminal observations were validated in 396 Mayo Clinic patients. Samples from the European cohort, collected at time of diagnosis, were analyzed for mutations in ASXL1, SRSF2, EZH2, TET2, DNMT3A, CBL, IDH1, IDH2, MPL and JAK2. Of these, ASXL1, SRSF2 and EZH2 mutations inter-independently predicted shortened survival. However, only ASXL1 mutations (HR: 2.02; P<0.001) remained significant in the context of the International Prognostic Scoring System (IPSS). These observations were validated in the Mayo Clinic cohort where mutation and survival analyses were performed from time of referral. ASXL1, SRSF2 and EZH2 mutations were independently associated with poor survival, but only ASXL1 mutations held their prognostic relevance (HR: 1.4; P=0.04) independent of the Dynamic IPSS (DIPSS)-plus model, which incorporates cytogenetic risk. In the European cohort, leukemia-free survival was negatively affected by IDH1/2, SRSF2 and ASXL1 mutations and in the Mayo cohort by IDH1 and SRSF2 mutations. Mutational profiling for ASXL1, EZH2, SRSF2 and IDH identifies PMF patients who are at risk for premature death or leukemic transformation.


Blood | 2014

Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia.

Giada Rotunno; Carmela Mannarelli; Paola Guglielmelli; Annalisa Pacilli; Alessandro Pancrazzi; Lisa Pieri; Tiziana Fanelli; Alberto Bosi; Alessandro M. Vannucchi

Mutations in the calreticulin (CALR) gene were recently discovered in patients with essential thrombocythemia (ET) lacking the JAK2V617F and MPLW515 mutations, but no information is available on the clinical correlates. In this series, CALR mutations were found in 15.5% of 576 World Health Organization-defined ET patients, accounting for 48.9% of JAK2 and MPL wild-type (wt) patients. CALR-mutated patients were preferentially male and showed higher platelet count and lower hemoglobin and leukocyte count compared with JAK2- and MPL-mutated patients. Patients carrying the CALR mutation had a lower risk of thrombosis than JAK2- and MPL-mutated patients; of interest, their risk was superimposable to patients who were wt for the above mutations. CALR mutation had no impact on survival or transformation to post-ET myelofibrosis. Genotyping for CALR mutations represents a novel useful tool for establishing a clonal myeloproliferative disorder in JAK2 and MPL wt patients with thrombocytosis and may have prognostic and therapeutic relevance.


Blood | 2014

Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis

Elisa Rumi; Daniela Pietra; Cristiana Pascutto; Paola Guglielmelli; Alejandra Martínez-Trillos; Ilaria Casetti; Dolors Colomer; Lisa Pieri; Marta Pratcorona; Giada Rotunno; Emanuela Sant’Antonio; Marta Bellini; Chiara Cavalloni; Carmela Mannarelli; Chiara Milanesi; Emanuela Boveri; Virginia Valeria Ferretti; Cesare Astori; Vittorio Rosti; Francisco Cervantes; Giovanni Barosi; Alessandro M. Vannucchi; Mario Cazzola

We studied the impact of driver mutations of JAK2, CALR, (calreticulin gene) or MPL on clinical course, leukemic transformation, and survival of patients with primary myelofibrosis (PMF). Of the 617 subjects studied, 399 (64.7%) carried JAK2 (V617F), 140 (22.7%) had a CALR exon 9 indel, 25 (4.0%) carried an MPL (W515) mutation, and 53 (8.6%) had nonmutated JAK2, CALR, and MPL (so-called triple-negative PMF). Patients with CALR mutation had a lower risk of developing anemia, thrombocytopenia, and marked leukocytosis compared with other subtypes. They also had a lower risk of thrombosis compared with patients carrying JAK2 (V617F). At the opposite, triple-negative patients had higher incidence of leukemic transformation compared with either CALR-mutant or JAK2-mutant patients. Median overall survival was 17.7 years in CALR-mutant, 9.2 years in JAK2-mutant, 9.1 years in MPL-mutant, and 3.2 years in triple-negative patients. In multivariate analysis corrected for age, CALR-mutant patients had better overall survival than either JAK2-mutant or triple-negative patients. The impact of genetic lesions on survival was independent of current prognostic scoring systems. These observations indicate that driver mutations define distinct disease entities within PMF. Accounting for them is not only relevant to clinical decision-making, but should also be considered in designing clinical trials.


Leukemia | 2014

The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients

Paola Guglielmelli; Terra L. Lasho; Giada Rotunno; Joannah Score; Carmela Mannarelli; Alessandro Pancrazzi; Flavia Biamonte; Animesh Pardanani; Katerina Zoi; Andreas Reiter; Andrew S Duncombe; Tiziana Fanelli; Daniela Pietra; Elisa Rumi; Christy Finke; Naseema Gangat; Rhett P. Ketterling; Ryan A. Knudson; Curt A. Hanson; Alberto Bosi; Arturo Pereira; Rossella Manfredini; Francisco Cervantes; Giovanni Barosi; Marie Cazzola; Nicholas C.P. Cross; Alessandro M. Vannucchi; Ayalew Tefferi

We recently defined a high-molecular risk category (HMR) in primary myelofibrosis (PMF), based on the presence of at least one of the five ‘prognostically detrimental’ mutated genes (ASXL1, EZH2, SRSF2 and IDH1/2). Herein, we evaluate the additional prognostic value of the ‘number’ of mutated genes. A total of 797 patients were recruited from Europe (n=537) and the Mayo Clinic (n=260). In the European cohort, 167 (31%) patients were HMR: 127 (23.6%) had one and 40 (7.4%) had two or more mutated genes. The presence of two or more mutations predicted the worst survival: median 2.6 years (hazard ratio (HR) 3.8, 95% confidence interval (CI) 2.6–5.7) vs 7.0 years (HR 1.9, 95% CI 1.4–2.6) for one mutation vs 12.3 years for no mutations. The results were validated in the Mayo cohort and prognostic significance in both cohorts was independent of International Prognostic Scoring System (IPSS; HR 2.4, 95% CI 1.6–3.6) and dynamic IPSS (DIPSS)-plus (HR 1.9, 95% CI 1.2–3.1), respectively. Two or more mutations were also associated with shortened leukemia-free survival (HR 6.2, 95% CI 3.5–10.7), also Mayo validated. Calreticulin mutations favorably affected survival, independently of both number of mutations and IPSS/DIPSS-plus. We conclude that the ‘number’ of prognostically detrimental mutations provides added value in the combined molecular and clinical prognostication of PMF.


Blood | 2014

miRNA-mRNA integrative analysis in primary myelofibrosis CD34+ cells: role of miR-155/JARID2 axis in abnormal megakaryopoiesis

Ruggiero Norfo; Roberta Zini; Valentina Pennucci; Elisa Bianchi; Simona Salati; Paola Guglielmelli; Costanza Bogani; Tiziana Fanelli; Carmela Mannarelli; Vittorio Rosti; Daniela Pietra; Silvia Salmoiraghi; Andrea Bisognin; Samantha Ruberti; Sebastiano Rontauroli; Giorgia Sacchi; Zelia Prudente; Giovanni Barosi; Mario Cazzola; Alessandro Rambaldi; Stefania Bortoluzzi; Sergio Ferrari; Enrico Tagliafico; Alessandro M. Vannucchi; Rossella Manfredini

Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by megakaryocyte (MK) hyperplasia, bone marrow fibrosis, and abnormal stem cell trafficking. PMF may be associated with somatic mutations in JAK2, MPL, or CALR. Previous studies have shown that abnormal MKs play a central role in the pathophysiology of PMF. In this work, we studied both gene and microRNA (miRNA) expression profiles in CD34(+) cells from PMF patients. We identified several biomarkers and putative molecular targets such as FGR, LCN2, and OLFM4. By means of miRNA-gene expression integrative analysis, we found different regulatory networks involved in the dysregulation of transcriptional control and chromatin remodeling. In particular, we identified a network gathering several miRNAs with oncogenic potential (eg, miR-155-5p) and targeted genes whose abnormal function has been previously associated with myeloid neoplasms, including JARID2, NR4A3, CDC42, and HMGB3. Because the validation of miRNA-target interactions unveiled JARID2/miR-155-5p as the strongest relationship in the network, we studied the function of this axis in normal and PMF CD34(+) cells. We showed that JARID2 downregulation mediated by miR-155-5p overexpression leads to increased in vitro formation of CD41(+) MK precursors. These findings suggest that overexpression of miR-155-5p and the resulting downregulation of JARID2 may contribute to MK hyperplasia in PMF.


Blood | 2014

Impact of mutational status on outcomes in myelofibrosis patients treated with ruxolitinib in the COMFORT-II study.

Paola Guglielmelli; Flavia Biamonte; Giada Rotunno; Valentina Artusi; Lucia Artuso; Isabella Bernardis; Elena Tenedini; Lisa Pieri; Chiara Paoli; Carmela Mannarelli; Rajmonda Fjerza; Elisa Rumi; Viktoriya Stalbovskaya; Matthew Squires; Mario Cazzola; Rossella Manfredini; Claire N. Harrison; Enrico Tagliafico; Alessandro M. Vannucchi

The JAK1/JAK2 inhibitor ruxolitinib produced significant reductions in splenomegaly and symptomatic burden and improved survival in patients with myelofibrosis (MF), irrespective of their JAK2 mutation status, in 2 phase III studies against placebo (COMFORT-I) and best available therapy (COMFORT-II). We performed a comprehensive mutation analysis to evaluate the impact of 14 MF-associated mutations on clinical outcomes in 166 patients included in COMFORT-II. We found that responses in splenomegaly and symptoms, as well as the risk of developing ruxolitinib-associated anemia and thrombocytopenia, occurred at similar frequencies across different mutation profiles. Ruxolitinib improved survival independent of mutation profile and reduced the risk of death in patients harboring a set of prognostically detrimental mutations (ASXL1, EZH2, SRSF2, IDH1/2) with an hazard ratio of 0.57 (95% confidence interval: 0.30-1.08) vs best available therapy. These data indicate that clinical efficacy and survival improvement may occur across different molecular subsets of patients with MF treated with ruxolitinib.


Nature Communications | 2015

Genetic variation at MECOM , TERT , JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms

William Tapper; Amy V. Jones; Robert Kralovics; Ashot S. Harutyunyan; Katerina Zoi; William Leung; Anna L. Godfrey; Paola Guglielmelli; Alison Callaway; Daniel Ward; Paula Aranaz; Helen E. White; Katherine Waghorn; Feng Lin; Andrew Chase; E. Joanna Baxter; Cathy MacLean; Jyoti Nangalia; Edwin Chen; Paul Evans; Michael Short; Andrew Jack; Louise Wallis; David Oscier; Andrew S Duncombe; Anna Schuh; Adam Mead; Michael Griffiths; Joanne Ewing; Rosemary E. Gale

Clonal proliferation in myeloproliferative neoplasms (MPN) is driven by somatic mutations in JAK2, CALR or MPL, but the contribution of inherited factors is poorly characterized. Using a three-stage genome-wide association study of 3,437 MPN cases and 10,083 controls, we identify two SNPs with genome-wide significance in JAK2V617F-negative MPN: rs12339666 (JAK2; meta-analysis P=1.27 × 10−10) and rs2201862 (MECOM; meta-analysis P=1.96 × 10−9). Two additional SNPs, rs2736100 (TERT) and rs9376092 (HBS1L/MYB), achieve genome-wide significance when including JAK2V617F-positive cases. rs9376092 has a stronger effect in JAK2V617F-negative cases with CALR and/or MPL mutations (Breslow–Day P=4.5 × 10−7), whereas in JAK2V617F-positive cases rs9376092 associates with essential thrombocythemia (ET) rather than polycythemia vera (allelic χ2 P=7.3 × 10−7). Reduced MYB expression, previously linked to development of an ET-like disease in model systems, associates with rs9376092 in normal myeloid cells. These findings demonstrate that multiple germline variants predispose to MPN and link constitutional differences in MYB expression to disease phenotype.


Leukemia | 2014

Calreticulin mutation-specific immunostaining in myeloproliferative neoplasms: pathogenetic insight and diagnostic value

Alessandro M. Vannucchi; Giada Rotunno; Niccolò Bartalucci; G. Raugei; Valentina Carrai; Manjola Balliu; Carmela Mannarelli; Annalisa Pacilli; Laura Calabresi; Rajmonda Fjerza; Lisa Pieri; Alberto Bosi; Rossella Manfredini; Paola Guglielmelli

Mutations in the gene calreticulin (CALR) occur in the majority of JAK2- and MPL-unmutated patients with essential thrombocythemia (ET) and primary myelofibrosis (PMF); identifying CALR mutations contributes to the diagnostic pathway of ET and PMF. CALR mutations are heterogeneous spanning over the exon 9, but all result in a novel common protein C terminus. We developed a polyclonal antibody against a 17-amino-acid peptide derived from mutated calreticulin that was used for immunostaining of bone marrow biopsies. We show that this antibody specifically recognized patients harboring different types of CALR mutation with no staining in healthy controls and JAK2- or MPL-mutated ET and PMF. The labeling was mostly localized in megakaryocytes, whereas myeloid and erythroid cells showed faint staining, suggesting a preferential expression of calreticulin in megakaryocytes. Megakaryocytic-restricted expression of calreticulin was also demonstrated using an antibody against wild-type calreticulin and by measuring the levels of calreticulin RNA by gene expression analysis. Immunostaining using an antibody specific for mutated calreticulin may become a rapid, simple and cost-effective method for identifying CALR-mutated patients complementing molecular analysis; furthermore, the labeling pattern supports the preferential expansion of megakaryocytic cell lineage as a result of CALR mutation in an immature hematopoietic stem cell.


Leukemia | 2014

Targeted cancer exome sequencing reveals recurrent mutations in myeloproliferative neoplasms

Elena Tenedini; Isabella Bernardis; Valentina Artusi; Lucia Artuso; Enrica Roncaglia; Paola Guglielmelli; Lisa Pieri; Costanza Bogani; Flavia Biamonte; Giada Rotunno; Carmela Mannarelli; Elisa Bianchi; Alessandro Pancrazzi; Tiziana Fanelli; G Malagoli Tagliazucchi; Sergio Ferrari; Rossella Manfredini; Alessandro M. Vannucchi; Enrico Tagliafico

With the intent of dissecting the molecular complexity of Philadelphia-negative myeloproliferative neoplasms (MPN), we designed a target enrichment panel to explore, using next-generation sequencing (NGS), the mutational status of an extensive list of 2000 cancer-associated genes and microRNAs. The genomic DNA of granulocytes and in vitro-expanded CD3+T-lymphocytes, as a germline control, was target-enriched and sequenced in a learning cohort of 20 MPN patients using Roche 454 technology. We identified 141 genuine somatic mutations, most of which were not previously described. To test the frequency of the identified variants, a larger validation cohort of 189 MPN patients was additionally screened for these mutations using Ion Torrent AmpliSeq NGS. Excluding the genes already described in MPN, for 8 genes (SCRIB, MIR662, BARD1, TCF12, FAT4, DAP3, POLG and NRAS), we demonstrated a mutation frequency between 3 and 8%. We also found that mutations at codon 12 of NRAS (NRASG12V and NRASG12D) were significantly associated, for primary myelofibrosis (PMF), with highest dynamic international prognostic scoring system (DIPSS)-plus score categories. This association was then confirmed in 66 additional PMF patients composing a final dataset of 168 PMF showing a NRAS mutation frequency of 4.7%, which was associated with a worse outcome, as defined by the DIPSS plus score.


Journal of Clinical Oncology | 2017

MIPSS70: Mutation-Enhanced International Prognostic Score System for Transplantation-Age Patients With Primary Myelofibrosis

Paola Guglielmelli; Terra L. Lasho; Giada Rotunno; Mythri Mudireddy; Carmela Mannarelli; Maura Nicolosi; Annalisa Pacilli; Animesh Pardanani; Elisa Rumi; Vittorio Rosti; Curtis A. Hanson; Francesco Mannelli; Rhett P. Ketterling; Naseema Gangat; Alessandro Rambaldi; Francesco Passamonti; Giovanni Barosi; Tiziano Barbui; Mario Cazzola; Alessandro M. Vannucchi; Ayalew Tefferi

Purpose To develop a prognostic system for transplantation-age patients with primary myelofibrosis (PMF) that integrates clinical, cytogenetic, and mutation data. Patients and Methods The study included 805 patients with PMF age ≤ 70 years recruited from multiple Italian centers and the Mayo Clinic (Rochester, MN), forming two independent learning and validation cohorts. A Cox multivariable model was used to select from among a list of 22 variables those that were predictive of overall survival (OS). Integrated clinical and genetic prognostic models with (MIPSS70-plus) or without (MIPSS70) cytogenetic information were developed. Results Multivariable analysis identified the following as significant risk factors for OS: hemoglobin < 100 g/L, leukocytes > 25 × 109/L, platelets < 100 × 109/L, circulating blasts ≥ 2%, bone marrow fibrosis grade ≥ 2, constitutional symptoms, absence of CALR type-1 mutation, presence of high-molecular risk mutation (ie, ASXL1, EZH2, SRSF2, IDH1/ 2), and presence of two or more high-molecular risk mutations. By assigning hazard ratio (HR)-weighted points to these variables, three risk categories were delineated for the MIPSS70 model; 5-year OS was 95% in low-risk, 70% in intermediate-risk, and 29% in high-risk categories, corresponding to median OS of 27.7 years (95% CI, 22 to 34 years), 7.1 years (95% CI, 6.2 to 8.1 years), and 2.3 years (95% CI, 1.9 to 2.7 years), respectively. In the MIPSS70-plus model, which included cytogenetic information, four risk categories were delineated, with 5-year OS of 91% in low-risk, 66% in intermediate-risk (HR, 3.2; 95% CI, 1.9 to 5.2), 42% in high-risk (HR, 6.4; 95% CI, 4.1 to 10.0), and 7% very high-risk categories (HR, 17.0; 95% CI, 9.8 to 29.2). Both models remained effective after inclusion of older patients in the analysis. Conclusion MIPSS70 and MIPSS70-plus provide complementary systems of risk stratification for transplantation-age patients with PMF and integrate prognostically relevant clinical, cytogenetic, and mutation data.

Collaboration


Dive into the Carmela Mannarelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa Pieri

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rossella Manfredini

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge