Rossella Manfredini
University of Modena and Reggio Emilia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rossella Manfredini.
Leukemia | 2013
Alessandro M. Vannucchi; Terra L. Lasho; Paola Guglielmelli; Flavia Biamonte; Animesh Pardanani; Arturo Pereira; Christy Finke; Joannah Score; Naseema Gangat; Carmela Mannarelli; Rhett P. Ketterling; Giada Rotunno; Ryan A. Knudson; Maria Chiara Susini; Rebecca R. Laborde; Ambra Spolverini; Alessandro Pancrazzi; Lisa Pieri; Rossella Manfredini; Enrico Tagliafico; Roberta Zini; Amy V. Jones; Katerina Zoi; Andreas Reiter; Andrew S Duncombe; Daniela Pietra; Elisa Rumi; Francisco Cervantes; Giovanni Barosi; M Cazzola
Patient outcome in primary myelofibrosis (PMF) is significantly influenced by karyotype. We studied 879 PMF patients to determine the individual and combinatorial prognostic relevance of somatic mutations. Analysis was performed in 483 European patients and the seminal observations were validated in 396 Mayo Clinic patients. Samples from the European cohort, collected at time of diagnosis, were analyzed for mutations in ASXL1, SRSF2, EZH2, TET2, DNMT3A, CBL, IDH1, IDH2, MPL and JAK2. Of these, ASXL1, SRSF2 and EZH2 mutations inter-independently predicted shortened survival. However, only ASXL1 mutations (HR: 2.02; P<0.001) remained significant in the context of the International Prognostic Scoring System (IPSS). These observations were validated in the Mayo Clinic cohort where mutation and survival analyses were performed from time of referral. ASXL1, SRSF2 and EZH2 mutations were independently associated with poor survival, but only ASXL1 mutations held their prognostic relevance (HR: 1.4; P=0.04) independent of the Dynamic IPSS (DIPSS)-plus model, which incorporates cytogenetic risk. In the European cohort, leukemia-free survival was negatively affected by IDH1/2, SRSF2 and ASXL1 mutations and in the Mayo cohort by IDH1 and SRSF2 mutations. Mutational profiling for ASXL1, EZH2, SRSF2 and IDH identifies PMF patients who are at risk for premature death or leukemic transformation.
Leukemia | 2014
Paola Guglielmelli; Terra L. Lasho; Giada Rotunno; Joannah Score; Carmela Mannarelli; Alessandro Pancrazzi; Flavia Biamonte; Animesh Pardanani; Katerina Zoi; Andreas Reiter; Andrew S Duncombe; Tiziana Fanelli; Daniela Pietra; Elisa Rumi; Christy Finke; Naseema Gangat; Rhett P. Ketterling; Ryan A. Knudson; Curt A. Hanson; Alberto Bosi; Arturo Pereira; Rossella Manfredini; Francisco Cervantes; Giovanni Barosi; Marie Cazzola; Nicholas C.P. Cross; Alessandro M. Vannucchi; Ayalew Tefferi
We recently defined a high-molecular risk category (HMR) in primary myelofibrosis (PMF), based on the presence of at least one of the five ‘prognostically detrimental’ mutated genes (ASXL1, EZH2, SRSF2 and IDH1/2). Herein, we evaluate the additional prognostic value of the ‘number’ of mutated genes. A total of 797 patients were recruited from Europe (n=537) and the Mayo Clinic (n=260). In the European cohort, 167 (31%) patients were HMR: 127 (23.6%) had one and 40 (7.4%) had two or more mutated genes. The presence of two or more mutations predicted the worst survival: median 2.6 years (hazard ratio (HR) 3.8, 95% confidence interval (CI) 2.6–5.7) vs 7.0 years (HR 1.9, 95% CI 1.4–2.6) for one mutation vs 12.3 years for no mutations. The results were validated in the Mayo cohort and prognostic significance in both cohorts was independent of International Prognostic Scoring System (IPSS; HR 2.4, 95% CI 1.6–3.6) and dynamic IPSS (DIPSS)-plus (HR 1.9, 95% CI 1.2–3.1), respectively. Two or more mutations were also associated with shortened leukemia-free survival (HR 6.2, 95% CI 3.5–10.7), also Mayo validated. Calreticulin mutations favorably affected survival, independently of both number of mutations and IPSS/DIPSS-plus. We conclude that the ‘number’ of prognostically detrimental mutations provides added value in the combined molecular and clinical prognostication of PMF.
Blood | 2014
Ruggiero Norfo; Roberta Zini; Valentina Pennucci; Elisa Bianchi; Simona Salati; Paola Guglielmelli; Costanza Bogani; Tiziana Fanelli; Carmela Mannarelli; Vittorio Rosti; Daniela Pietra; Silvia Salmoiraghi; Andrea Bisognin; Samantha Ruberti; Sebastiano Rontauroli; Giorgia Sacchi; Zelia Prudente; Giovanni Barosi; Mario Cazzola; Alessandro Rambaldi; Stefania Bortoluzzi; Sergio Ferrari; Enrico Tagliafico; Alessandro M. Vannucchi; Rossella Manfredini
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by megakaryocyte (MK) hyperplasia, bone marrow fibrosis, and abnormal stem cell trafficking. PMF may be associated with somatic mutations in JAK2, MPL, or CALR. Previous studies have shown that abnormal MKs play a central role in the pathophysiology of PMF. In this work, we studied both gene and microRNA (miRNA) expression profiles in CD34(+) cells from PMF patients. We identified several biomarkers and putative molecular targets such as FGR, LCN2, and OLFM4. By means of miRNA-gene expression integrative analysis, we found different regulatory networks involved in the dysregulation of transcriptional control and chromatin remodeling. In particular, we identified a network gathering several miRNAs with oncogenic potential (eg, miR-155-5p) and targeted genes whose abnormal function has been previously associated with myeloid neoplasms, including JARID2, NR4A3, CDC42, and HMGB3. Because the validation of miRNA-target interactions unveiled JARID2/miR-155-5p as the strongest relationship in the network, we studied the function of this axis in normal and PMF CD34(+) cells. We showed that JARID2 downregulation mediated by miR-155-5p overexpression leads to increased in vitro formation of CD41(+) MK precursors. These findings suggest that overexpression of miR-155-5p and the resulting downregulation of JARID2 may contribute to MK hyperplasia in PMF.
Blood | 2010
Elisa Bianchi; Roberta Zini; Simona Salati; Elena Tenedini; Ruggiero Norfo; Enrico Tagliafico; Rossella Manfredini; Sergio Ferrari
The c-myb transcription factor is highly expressed in immature hematopoietic cells and down-regulated during differentiation. To define its role during the hematopoietic lineage commitment, we silenced c-myb in human CD34(+) hematopoietic stem/progenitor cells. Noteworthy, c-myb silencing increased the commitment capacity toward the macrophage and megakaryocyte lineages, whereas erythroid differentiation was impaired, as demonstrated by clonogenic assay, morphologic and immunophenotypic data. Gene expression profiling and computational analysis of promoter regions of genes modulated in c-myb-silenced CD34(+) cells identified the transcription factors Kruppel-Like Factor 1 (KLF1) and LIM Domain Only 2 (LMO2) as putative targets, which can account for c-myb knockdown effects. Indeed, chromatin immunoprecipitation and luciferase reporter assay demonstrated that c-myb binds to KLF1 and LMO2 promoters and transactivates their expression. Consistently, the retroviral vector-mediated overexpression of either KLF1 or LMO2 partially rescued the defect in erythropoiesis caused by c-myb silencing, whereas only KLF1 was also able to repress the megakaryocyte differentiation enhanced in Myb-silenced CD34(+) cells. Our data collectively demonstrate that c-myb plays a pivotal role in human primary hematopoietic stem/progenitor cells lineage commitment, by enhancing erythropoiesis at the expense of megakaryocyte diffentiation. Indeed, we identified KLF1 and LMO2 transactivation as the molecular mechanism underlying Myb-driven erythroid versus megakaryocyte cell fate decision.
Blood | 2014
Paola Guglielmelli; Flavia Biamonte; Giada Rotunno; Valentina Artusi; Lucia Artuso; Isabella Bernardis; Elena Tenedini; Lisa Pieri; Chiara Paoli; Carmela Mannarelli; Rajmonda Fjerza; Elisa Rumi; Viktoriya Stalbovskaya; Matthew Squires; Mario Cazzola; Rossella Manfredini; Claire N. Harrison; Enrico Tagliafico; Alessandro M. Vannucchi
The JAK1/JAK2 inhibitor ruxolitinib produced significant reductions in splenomegaly and symptomatic burden and improved survival in patients with myelofibrosis (MF), irrespective of their JAK2 mutation status, in 2 phase III studies against placebo (COMFORT-I) and best available therapy (COMFORT-II). We performed a comprehensive mutation analysis to evaluate the impact of 14 MF-associated mutations on clinical outcomes in 166 patients included in COMFORT-II. We found that responses in splenomegaly and symptoms, as well as the risk of developing ruxolitinib-associated anemia and thrombocytopenia, occurred at similar frequencies across different mutation profiles. Ruxolitinib improved survival independent of mutation profile and reduced the risk of death in patients harboring a set of prognostically detrimental mutations (ASXL1, EZH2, SRSF2, IDH1/2) with an hazard ratio of 0.57 (95% confidence interval: 0.30-1.08) vs best available therapy. These data indicate that clinical efficacy and survival improvement may occur across different molecular subsets of patients with MF treated with ruxolitinib.
Leukemia | 2014
Alessandro M. Vannucchi; Giada Rotunno; Niccolò Bartalucci; G. Raugei; Valentina Carrai; Manjola Balliu; Carmela Mannarelli; Annalisa Pacilli; Laura Calabresi; Rajmonda Fjerza; Lisa Pieri; Alberto Bosi; Rossella Manfredini; Paola Guglielmelli
Mutations in the gene calreticulin (CALR) occur in the majority of JAK2- and MPL-unmutated patients with essential thrombocythemia (ET) and primary myelofibrosis (PMF); identifying CALR mutations contributes to the diagnostic pathway of ET and PMF. CALR mutations are heterogeneous spanning over the exon 9, but all result in a novel common protein C terminus. We developed a polyclonal antibody against a 17-amino-acid peptide derived from mutated calreticulin that was used for immunostaining of bone marrow biopsies. We show that this antibody specifically recognized patients harboring different types of CALR mutation with no staining in healthy controls and JAK2- or MPL-mutated ET and PMF. The labeling was mostly localized in megakaryocytes, whereas myeloid and erythroid cells showed faint staining, suggesting a preferential expression of calreticulin in megakaryocytes. Megakaryocytic-restricted expression of calreticulin was also demonstrated using an antibody against wild-type calreticulin and by measuring the levels of calreticulin RNA by gene expression analysis. Immunostaining using an antibody specific for mutated calreticulin may become a rapid, simple and cost-effective method for identifying CALR-mutated patients complementing molecular analysis; furthermore, the labeling pattern supports the preferential expansion of megakaryocytic cell lineage as a result of CALR mutation in an immature hematopoietic stem cell.
Cell Death & Differentiation | 2006
Claudia Gemelli; Monica Montanari; Elena Tenedini; T Zanocco Marani; Tatiana Vignudelli; M Siena; Roberta Zini; Simona Salati; Enrico Tagliafico; Rossella Manfredini; Alexis Grande; Sergio Ferrari
Upregulation of specific transcription factors is a generally accepted mechanism to explain the commitment of hematopoietic stem cells along precise maturation lineages. Based on this premise, transduction of primary hematopoietic stem/progenitor cells with viral vectors containing the investigated transcription factors appears as a suitable experimental model to identify such regulators. Although MafB transcription factor is believed to play a role in the regulation of monocytic commitment, no demonstration is, to date, available supporting this function in normal human hematopoiesis. To address this issue, we retrovirally transduced cord blood CD34+ hematopoietic progenitors with a MafB cDNA. Immunophenotypic and morphological analysis of transduced cells demonstrated the induction of a remarkable monomacrophage differentiation. Microarray analysis confirmed these findings and disclosed the upregulation of macrophage-related transcription factors belonging to the AP-1, MAF, PPAR and MiT families. Altogether our data allow to conclude that MafB is a key regulator of human monocytopoiesis.
Journal of Leukocyte Biology | 2002
Alexis Grande; Monica Montanari; Enrico Tagliafico; Rossella Manfredini; Tommaso Zanocco Marani; M Siena; Elena Tenedini; Andrea Gallinelli; Sergio Ferrari
Although supraphysiological levels of 1α, 25 dihydroxyvitamin D3 (VD) have been demonstrated extensively to induce the monomacrophagic differentiation of leukemic myelo‐ and monoblasts, little is known about the role that physiological levels of this vitamin could play in the regulation of normal hematopoiesis. To clarify this issue, we adopted a liquid‐culture model in which cord blood CD34+ hematopoietic progenitors, induced to differentiate in the presence of different combinations of cytokines, were exposed to VD at various concentrations and stimulation modalities. The data obtained show that physiological levels of VD promote a differentiation of CD34+ hematopoietic progenitors characterized by the induction of all the monomacrophagic immunophenotypic and morphological markers. This effect is not only exerted at the terminal maturation but also at the commitment level, as demonstrated by the decrease of highly undifferentiated CD34+CD38− hematopoietic stem cells, the down‐regulation of CD34 antigen, and the increase of monocyte‐committed progenitors. Molecular analysis suggests that the VD genomic signaling pathway underlies the described differentiation effects.
Stem Cells | 2005
Rossella Manfredini; Roberta Zini; Simona Salati; M Siena; Elena Tenedini; Enrico Tagliafico; Monica Montanari; Tommaso Zanocco-Marani; Claudia Gemelli; Tatiana Vignudelli; Alexis Grande; Miriam Fogli; Lara Rossi; Maria Elena Fagioli; Lucia Catani; Roberto M. Lemoli; Sergio Ferrari
The gene expression profile of CD34− hematopoietic stem cells (HSCs) and the correlations with their biological properties are still poorly understood. To address this issue, we used the DNA microarray technology to compare the expression profiles of different peripheral blood hemopoietic stem/progenitor cell subsets, lineage‐negative (Lin−) CD34−, Lin−CD34+, and Lin+CD34+ cells. The analysis of gene categories differentially expressed shows that the expression of CD34 is associated with cell cycle entry and metabolic activation, such as DNA, RNA, and protein synthesis. Moreover, the significant upregulation in CD34− cells of pathways inhibiting HSC proliferation induces a strong differential expression of cyclins, cyclin‐dependent kinases (CDKs), CDK inhibitors, and growth‐arrest genes. According to the expression of their receptors and transducers, interleukin (IL)‐10 and IL‐17 showed an inhibitory effect on the clonogenic activity of CD34− cells. Conversely, CD34+ cells were sensitive to the mitogenic stimulus of thrombopoietin. Furthermore, CD34− cells express preferentially genes related to neural, epithelial, and muscle differentiation. The analysis of transcription factor expression shows that the CD34 induction results in the upregulation of genes related to self‐renewal and lineage commitment. The preferential expression in CD34+ cells of genes supporting the HSC mobilization and homing to the bone marrow, such as chemokine receptors and integrins, gives the molecular basis for the higher engraftment capacity of CD34+ cells. Thus, the different kinetic status of CD34− and CD34+ cells, detailed by molecular and functional analysis, significantly influences their biological behavior.
Blood | 2009
Roberto M. Lemoli; Valentina Salvestrini; Elisa Bianchi; Francesco Bertolini; Miriam Fogli; Marilina Amabile; Agostino Tafuri; Simona Salati; Roberta Zini; Nicoletta Testoni; Cristina Rabascio; Lara Rossi; Ines Martin-Padura; Fausto Castagnetti; Paola Marighetti; Giovanni Martinelli; Michele Baccarani; Sergio Ferrari; Rossella Manfredini
We show the molecular and functional characterization of a novel population of lineage-negative CD34-negative (Lin(-)CD34(-)) hematopoietic stem cells from chronic myelogenous leukemia (CML) patients at diagnosis. Molecular karyotyping and quantitative analysis of BCR-ABL transcript demonstrated that approximately one-third of CD34(-) cells are leukemic. CML Lin(-)CD34(-) cells showed kinetic quiescence and limited clonogenic capacity. However, stroma-dependent cultures induced CD34 expression on some cells and cell cycling, and increased clonogenic activity and expression of BCR-ABL transcript. Lin(-)CD34(-) cells showed hematopoietic cell engraftment rate in 2 immunodeficient mouse strains similar to Lin-CD34(+) cells, whereas endothelial cell engraftment was significantly higher. Gene expression profiling revealed the down-regulation of cell-cycle arrest genes and genes involved in antigen presentation and processing, while the expression of genes related to tumor progression, such as angiogenic factors, was strongly up-regulated compared with normal counterparts. Phenotypic analysis confirmed the significant down-regulation of HLA class I and II molecules in CML Lin(-)CD34(-) cells. Imatinib mesylate did not reduce fusion transcript levels, BCR-ABL kinase activity, and clonogenic efficiency of CML Lin(-)CD34(-) cells in vitro. Moreover, leukemic CD34(-) cells survived exposure to BCR-ABL inhibitors in vivo. Thus, we identified a novel CD34(-) leukemic stem cell subset in CML with peculiar molecular and functional characteristics.