Carmela Monterroso
University of Santiago de Compostela
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carmela Monterroso.
Chemosphere | 2010
R. Calvelo Pereira; Carmela Monterroso; F. Macías
The aim of the present study was to select candidate plant species for phytoremediation of soils contaminated with hexachlorocyclohexane (HCH). For this purpose, an experiment was carried out under controlled conditions of germination and growth, with nine plant species of economic and/or agricultural interest, in a soil contaminated with a heterogeneous mixture (at eight different levels of contamination) of the main HCH isomers (alpha-, beta-, gamma- and delta-HCH). The results revealed differences in the plant responses to the control soil and the soils containing HCH. Germination was not as strongly affected as other parameters such as the rate of germination and seedling vigour. In general, all of the species displayed signs of stress in response to the presence of HCH, although to different degrees. Some of the species used in the experiment (Hordeum vulgare L., Brassica sp., Phaseoulus vulgaris L.) were capable of mitigating the negative effects of HCH, and displayed a certain degree of resistance, as their biomass production was not greatly affected by the contaminant. These (tolerant) plants therefore appear to be ideal for phytoremediation purposes.
Applied and Environmental Microbiology | 2013
Cristina Becerra-Castro; Petra Kidd; Melanie Kuffner; Ángeles Prieto-Fernández; Stephan Hann; Carmela Monterroso; Angela Sessitsch; Walter W. Wenzel; Markus Puschenreiter
ABSTRACT The bioavailability of metals in soil is often cited as a limiting factor of phytoextraction (or phytomining). Bacterial metabolites, such as organic acids, siderophores, or biosurfactants, have been shown to mobilize metals, and their use to improve metal extraction has been proposed. In this study, the weathering capacities of, and Ni mobilization by, bacterial strains were evaluated. Minimal medium containing ground ultramafic rock was inoculated with either of two Arthrobacter strains: LA44 (indole acetic acid [IAA] producer) or SBA82 (siderophore producer, PO4 solubilizer, and IAA producer). Trace elements and organic compounds were determined in aliquots taken at different time intervals after inoculation. Trace metal fractionation was carried out on the remaining rock at the end of the experiment. The results suggest that the strains act upon different mineral phases. LA44 is a more efficient Ni mobilizer, apparently solubilizing Ni associated with Mn oxides, and this appeared to be related to oxalate production. SBA82 also leads to release of Ni and Mn, albeit to a much lower extent. In this case, the concurrent mobilization of Fe and Si indicates preferential weathering of Fe oxides and serpentine minerals, possibly related to the siderophore production capacity of the strain. The same bacterial strains were tested in a soil-plant system: the Ni hyperaccumulator Alyssum serpyllifolium subsp. malacitanum was grown in ultramafic soil in a rhizobox system and inoculated with each bacterial strain. At harvest, biomass production and shoot Ni concentrations were higher in plants from inoculated pots than from noninoculated pots. Ni yield was significantly enhanced in plants inoculated with LA44. These results suggest that Ni-mobilizing inoculants could be useful for improving Ni uptake by hyperaccumulator plants.
Plant and Soil | 2016
Vanessa Álvarez-López; Ángeles Prieto-Fernández; Cristina Becerra-Castro; Carmela Monterroso; Petra Kidd
AimPlant-associated bacteria can improve phytoextraction by increasing plant growth and/or metal uptake. This study aimed to characterise the culturable rhizobacterial community associated with two Ni-hyperaccumulators and to obtain a collection of isolates for application in Ni phytomining.MethodsNon-vegetated and rhizosphere soil samples were collected from the Ni-hyperaccumulator Alyssum serpyllifolium ssp. lusitanicum (three populations) and Alyssum serpyllifolium ssp. malacitanum (one population), as well as from non-hyperaccumulating plants (Dactylis glomerata, Santolina semidentata and Alyssum serpyllifolium ssp. serpyllifolium). Rhizobacteria were isolated and characterised genotypically (BOX-PCR, 16S rDNA sequencing) and phenotypically (Ni tolerance, plant growth promoting (PGP) traits, biosurfactant production).ResultsHyperaccumulating Alyssum subspecies hosted higher densities of bacteria compared to either non-hyperaccumulators or non-vegetated soil. In some cases hyperaccumulators showed selective enrichment of Ni-tolerant bacteria. Most bacterial strains belonged to the Actinobacteria phylum and presented Ni resistance. Phosphorus-solubilisers were mostly associated with the hyperaccumulators, siderophore-producers with D. glomerata, and IAA-producers with both these species.ConclusionTaxonomic diversity and phenotypic characteristics were soil-, plant species- and plant population-specific. Moreover, differences were observed between the two Ni-hyperaccumulating subspecies and amongst plant populations. Several strains presented PGP characteristics which could be useful when selecting microorganisms for bioaugmentation trials.
International Journal of Phytoremediation | 2014
María Balseiro-Romero; Petra Kidd; Carmela Monterroso
Vegetation and its associated microorganisms play an important role in the behaviour of soil contaminants. One of the most important elements is root exudation, since it can affect the mobility, and therefore, the bioavailability of soil contaminants. In this study, we evaluated the influence of root exudates on the mobility of fuel derived compounds in contaminated soils. Samples of humic acid, montmorillonite, and an A horizon from an alumi-umbric Cambisol were contaminated with volatile contaminants present in fuel: oxygenates (MTBE and ETBE) and monoaromatic compounds (benzene, toluene, ethylbenzene and xylene). Natural root exudates obtained from Holcus lanatus and Cytisus striatus and ten artificial exudates (components frequently found in natural exudates) were added to the samples, individually and as a mixture, to evaluate their effects on contaminant mobility. Fuel compounds were analyzed by headspace-gas chromatography-mass spectrometry. In general, the addition of natural and artificial exudates increased the mobility of all contaminants in humic acid. In A horizon and montmorillonite, natural or artificial exudates (as a mixture) decreased the contaminant mobility. However, artificial exudates individually had different effects: carboxylic components increased and phenolic components decreased the contaminant mobility. These results established a base for developing and improving phytoremediation processes of fuel-contaminated soils.
Chemosphere | 2013
R. Chaves; D. López; F. Macías; J.J. Casares; Carmela Monterroso
Persistent organic pollutants (POPs) are within the most dangerous pollutants released into the environment by human activities. Due to their resistance to degradation (chemical, biological or photolytic), it is critical to assess the fate and environmental hazards of the exchange of POPs between different environmental media. System Dynamics enables to represent complex systems and analyze their dynamic behavior. It provides a highly visual representation of the structure of the system and the existing relationships between the several parameters and variables, facilitating the understanding of the behavior of the system. In the present study the fate of γ-hexachlorocyclohexane (lindane) in a contaminated soil was modeled using the Vensim® simulation software. Results show a gradual decrease in the lindane content in the soil during a simulation period of 10 years. The most important route affecting the concentrations of the contaminant was the biochemical degradation, followed by infiltration and hydrodynamic dispersion. The model appeared to be highly sensitive to the half-life of the pollutant, which value depends on environmental conditions and directly affects the biochemical degradation.
Genome Announcements | 2016
Panagiotis Gkorezis; Jonathan D. Van Hamme; Eric M. Bottos; Sofie Thijs; María Balseiro-Romero; Carmela Monterroso; Petra Kidd; Francois Rineau; Nele Weyens; Jaco Vangronsveld
ABSTRACT We report the 4.76-Mb draft genome of Pantoea ananatis GB1, a Gram-negative bacterium of the family Enterobacteriaceae, isolated from the roots of poplars planted for phytoremediation of a diesel-contaminated plume at the Ford Motor Company site in Genk, Belgium. Strain GB1 promotes plant growth in various hosts and metabolizes hydrocarbons.
International Journal of Phytoremediation | 2018
Zahra Ghasemi; Seyed Majid Ghaderian; Carmela Monterroso; Petra Kidd
ABSTRACT Phytomining techniques based on metal-hyperaccumulating plants can be implemented in serpentine quarry wastes for Ni recovery. However, strategies must be developed to overcome the unfavourable plant growth conditions that these substrates present and to optimize Ni yields. In this study, the Ni hyperaccumulators Alyssum serpyllifolium, Alyssum inflatum, and Alyssum bracteatum were evaluated for their Ni phytoextraction efficiency from quarry tailings. Effects of two organic amendments, composted municipal sewage sludge and cow manure, on plant growth and physiological status and Ni removal were determined. Organic amendments were incorporated at two addition rates (5% and 20% w/w). The best-performing hyperaccumulators were A. inflatum and A. serpyllifolium. Organic amendments improved plant biomass production, photosynthetic efficiency and nutrition, but reduced shoot Ni concentrations. However, the stimulation in biomass resulted in significantly enhanced Ni yields. The most promising results were found using low addition rates and after manure incorporation.
Genome Announcements | 2016
Panagiotis Gkorezis; Jonathan D. Van Hamme; Eric M. Bottos; Sofie Thijs; María Balseiro-Romero; Carmela Monterroso; Petra Kidd; Francois Rineau; Nele Weyens; Wouter Sillen; Jaco Vangronsveld
ABSTRACT We report the 4.39 Mb draft genome of Bacillus licheniformis GB2, a hydrocarbonoclastic Gram-positive bacterium of the family Bacillaceae, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain GB2 is an effective plant-growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations.
Environmental and Experimental Botany | 2009
Petra Kidd; Juan Barceló; M. Pilar Bernal; F. Navari-Izzo; Charlotte Poschenrieder; Stefan Shilev; Rafael Clemente; Carmela Monterroso
Plant and Soil | 2008
P. S. Kidd; Ángeles Prieto-Fernández; Carmela Monterroso; M. J. Acea