Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carmela Ziviello is active.

Publication


Featured researches published by Carmela Ziviello.


Molecular Therapy | 2010

Gene Therapy for Leber's Congenital Amaurosis is Safe and Effective Through 1.5 Years After Vector Administration

Francesca Simonelli; Albert M. Maguire; Francesco Testa; Eric A. Pierce; Federico Mingozzi; Jeannette L. Bennicelli; Settimio Rossi; Kathleen Marshall; Sandro Banfi; Enrico Maria Surace; Junwei Sun; T. Michael Redmond; Xiaosong Zhu; Kenneth S. Shindler; Gui-shuang Ying; Carmela Ziviello; Carmela Acerra; J. Fraser Wright; Jennifer Wellman McDonnell; Katherine A. High; Jean Bennett; Alberto Auricchio

The safety and efficacy of gene therapy for inherited retinal diseases is being tested in humans affected with Lebers congenital amaurosis (LCA), an autosomal recessive blinding disease. Three independent studies have provided evidence that the subretinal administration of adeno-associated viral (AAV) vectors encoding RPE65 in patients affected with LCA2 due to mutations in the RPE65 gene, is safe and, in some cases, results in efficacy. We evaluated the long-term safety and efficacy (global effects on retinal/visual function) resulting from subretinal administration of AAV2-hRPE65v2. Both the safety and the efficacy noted at early timepoints persist through at least 1.5 years after injection in the three LCA2 patients enrolled in the low dose cohort of our trial. A transient rise in neutralizing antibodies to AAV capsid was observed but there was no humoral response to RPE65 protein. The persistence of functional amelioration suggests that AAV-mediated gene transfer to the human retina does not elicit immunological responses which cause significant loss of transduced cells. The persistence of physiologic effect supports the possibility that gene therapy may influence LCA2 disease progression. The safety of the intervention and the stability of the improvement in visual and retinal function in these subjects support the use of AAV-mediated gene augmentation therapy for treatment of inherited retinal diseases.


Investigative Ophthalmology & Visual Science | 2009

A Homozygous Missense Mutation in the IRBP Gene (RBP3) Associated with Autosomal Recessive Retinitis Pigmentosa

Anneke I. den Hollander; Terri L. McGee; Carmela Ziviello; Sandro Banfi; Thaddeus P. Dryja; Federico Gonzalez-Fernandez; Debashis Ghosh; Eliot L. Berson

PURPOSE Interphotoreceptor retinoid-binding protein (IRBP) has been considered essential for normal rod and cone function, as it mediates the transport of retinoids between the photoreceptors and the retinal pigment epithelium. This study was performed to determine whether mutations in the IRBP gene (RBP3) are associated with photoreceptor degeneration. METHODS A consanguineous family was ascertained in which four children had autosomal recessive retinitis pigmentosa (RP). Homozygosity mapping performed with SNP microarrays revealed only one homozygous region shared by all four affected siblings. Sequencing of RBP3, contained in this region, was performed in this family and others with recessive RP. Screening was also performed on patients with various other forms of retinal degeneration or malfunction. RESULTS Sequence analysis of RBP3 revealed a homozygous missense mutation (p.Asp1080Asn) in the four affected siblings. The mutation affects a residue that is completely conserved in all four homologous modules of the IRBP protein of vertebrate species and in C-terminal-processing proteases, photosynthesis enzymes found in bacteria, algae, and plants. Based on the previously reported crystal structure of Xenopus IRBP, the authors predict that the Asp1080-mediated conserved salt bridge that appears to participate in scaffolding of the retinol-binding domain is abolished by the mutation. No RBP3 mutations were detected in 395 unrelated patients with recessive or isolate RP or in 680 patients with other forms of hereditary retinal degeneration. CONCLUSIONS Mutations in RBP3 are an infrequent cause of autosomal recessive RP. The mutation Asp1080Asn may alter the conformation of the IRBP protein by disrupting a conserved salt bridge.


Archives of Ophthalmology | 2012

BBS1 mutations in a wide spectrum of phenotypes ranging from nonsyndromic retinitis pigmentosa to Bardet-Biedl syndrome

Alejandro Estrada-Cuzcano; Robert K. Koenekoop; Audrey Sénéchal; Elfride De Baere; Thomy de Ravel; Sandro Banfi; Susanne Kohl; Carmen Ayuso; Dror Sharon; Carel B. Hoyng; Christian P. Hamel; Bart P. Leroy; Carmela Ziviello; Irma Lopez; Alexandre Bazinet; Bernd Wissinger; Ieva Sliesoraityte; Almudena Avila-Fernandez; Karin W. Littink; Enzo Maria Vingolo; Sabrina Signorini; Eyal Banin; Liliana Mizrahi-Meissonnier; E. Zrenner; Ulrich Kellner; Rob W.J. Collin; Anneke I. den Hollander; Frans P.M. Cremers; B. Jeroen Klevering

OBJECTIVE To investigate the involvement of the Bardet-Biedl syndrome (BBS) gene BBS1 p.M390R variant in nonsyndromic autosomal recessive retinitis pigmentosa (RP). METHODS Homozygosity mapping of a patient with isolated RP was followed by BBS1 sequence analysis. We performed restriction fragment length polymorphism analysis of the p.M390R allele in 2007 patients with isolated RP or autosomal recessive RP and in 1824 ethnically matched controls. Patients with 2 BBS1 variants underwent extensive clinical and ophthalmologic assessment. RESULTS In an RP proband who did not fulfill the clinical criteria for BBS, we identified a large homozygous region encompassing the BBS1 gene, which carried the p.M390R variant. In addition, this variant was detected homozygously in 10 RP patients and 1 control, compound heterozygously in 3 patients, and heterozygously in 5 patients and 6 controls. The 14 patients with 2 BBS1 variants showed the entire clinical spectrum, from nonsyndromic RP to full-blown BBS. In 8 of 14 patients, visual acuity was significantly reduced. In patients with electroretinographic responses, a rod-cone pattern of photoreceptor degeneration was observed. CONCLUSIONS Variants in BBS1 are significantly associated with nonsyndromic autosomal recessive RP and relatively mild forms of BBS. As exemplified in this study by the identification of a homozygous p.M390R variant in a control individual and in unaffected parents of BBS patients in other studies, cis - or trans -acting modifiers may influence the disease phenotype. CLINICAL RELEVANCE It is important to monitor patients with an early diagnosis of mild BBS phenotypes for possible life-threatening conditions.


British Journal of Ophthalmology | 2003

Clinical features of X linked juvenile retinoschisis associated with new mutations in the XLRS1 gene in Italian families.

Francesca Simonelli; G. Cennamo; Carmela Ziviello; Francesco Testa; G. De Crecchio; A. Nesti; Maria Pia Manitto; Alfredo Ciccodicola; Sandro Banfi; R. Brancato; Ernesto Rinaldi

Aims: To describe the clinical phenotype of X linked juvenile retinoschisis in eight Italian families with six different mutations in the XLRS1 gene. Methods: Complete ophthalmic examinations, electroretinography and A and B-scan standardised echography were performed in 18 affected males. The coding sequences of the XLRS1 gene were amplified by polymerase chain reaction and directly sequenced on an automated sequencer. Results: Six different XLRS1 mutations were identified; two of these mutations Ile81Asn and the Trp122Cys, have not been previously described. The affected males showed an electronegative response to the standard white scotopic stimulus and a prolonged implicit time of the 30 Hz flicker. In the families with Trp112Cys and Trp122Cys mutations we observed a more severe retinoschisis (RS) clinical picture compared with the other genotypes. Conclusion: The severe RS phenotypes associated with Trp112Cys and to Trp122Cys mutations suggest that these mutations determine a notable alteration in the function of the retinoschisin protein.


Investigative Ophthalmology & Visual Science | 2011

Evaluation of Italian patients with leber congenital amaurosis due to AIPL1 mutations highlights the potential applicability of gene therapy.

Francesco Testa; Enrico Maria Surace; Settimio Rossi; Elena Marrocco; Annagiusi Gargiulo; Valentina Di Iorio; Carmela Ziviello; A. Nesti; Simona Fecarotta; Maria Laura Bacci; Massimo Giunti; Michele Della Corte; Sandro Banfi; Alberto Auricchio; Francesca Simonelli

PURPOSE To evaluate the suitability of gene delivery-based approaches as potential treatment of Leber congenital amaurosis 4 (LCA4) due to AIPL1 mutations. METHODS Genomic DNA from patients was analyzed using a microarray chip and direct sequencing. A detailed clinical evaluation including fundus autofluorescence (FAF) and optical coherence tomography (OCT) was performed in patients with AIPL1 mutations. Aipl1 null mice and porcine eyes were subretinally injected with adeno-associated viral (AAV) vectors harboring the human AIPL1 coding sequence. RESULTS We identified 10 LCA4 patients with mutations in AIPL1. The p.W278X sequence variation was the one most frequently found. Clinical assessment revealed common features including diffuse retinal dystrophies and maculopathy. However, optical coherence tomography showed partially retained photoreceptors in extramacular regions at all ages. The fundus autofluorescence was elicitable at the posterior pole and absent in the fovea. AAV-mediated gene transfer in Aipl1 -/- mice was associated with restoration of AIPL1 and βPDE expression in photoreceptors and protection from degeneration. Administration of a clinically relevant dose of AAV2/8-AIPL1 to the preclinical large porcine retina resulted in high level of AIPL1 photoreceptor expression in the absence of toxicity. CONCLUSIONS Using advanced imaging diagnostics we showed that maculopathy is a main feature of LCA4. We identified retinal areas at the posterior pole with surviving photoreceptors present even in adult LCA4 patients, which could be the target of gene therapy. The possible use of gene therapy for LCA4 is additionally supported by the protection from photoreceptor degeneration observed in Aipl 1-/- mice and by the high levels of photoreceptor transduction in the absence of toxicity observed after AAV2/8 delivery to the large porcine retina.


European Journal of Human Genetics | 2003

Identification and characterisation of the retinitis pigmentosa 1-like1 gene ( RP1L1 ): a novel candidate for retinal degenerations

Ivan Conte; Marta Lestingi; Anneke I. den Hollander; Giovanna Alfano; Carmela Ziviello; Mariarosaria Pugliese; Diego Circolo; Cristina Caccioppoli; Alfredo Ciccodicola; Sandro Banfi

Retinitis pigmentosa (RP) is the most common form of inherited retinopathy, with an approximate incidence of 1 in 3700 individuals worldwide. Mutations in the retinitis pigmentosa 1 (RP1) gene are responsible for about 5–10% cases of autosomal dominant RP. The RP1 gene is specifically expressed in the photoreceptor layers of the postnatal retina and encodes a predicted protein characterised by the presence of two doublecortin (DC) domains, known to be implicated in microtubule binding. We identified and characterised, both in human and in mouse, a novel mammalian gene, termed Retinitis Pigmentosa1-like1 (RP1L1), because of its significant sequence similarity to the RP1 gene product. The sequence homology between RP1 and RP1L1 was found to be mostly restricted to the DC domains and to the N-terminal region, including the first 350 amino acids. The RP1L1 gene was also found to be conserved in distant vertebrates, since we identified a homologue in Fugu rubripes (pufferfish). Similar to RP1, RP1L1 expression is restricted to the postnatal retina, as determined by semiquantitative reverse transcriptase-PCR and Northern analysis. The retina-specific expression and the sequence similarity to RP1 render RP1L1 a potential candidate for inherited retinal disorders.


Orphanet Journal of Rare Diseases | 2013

The ADAMTS18 gene is responsible for autosomal recessive early onset severe retinal dystrophy

Ivana Peluso; Ivan Conte; Francesco Testa; Gopuraja Dharmalingam; Mariateresa Pizzo; Rob W.J. Collin; Nicola Meola; Sara Barbato; Margherita Mutarelli; Carmela Ziviello; Anna Maria Barbarulo; Vincenzo Nigro; Mariarosa Ab Melone; Francesca Simonelli; Sandro Banfi

BackgroundInherited retinal dystrophies, including Retinitis Pigmentosa and Leber Congenital Amaurosis among others, are a group of genetically heterogeneous disorders that lead to variable degrees of visual deficits. They can be caused by mutations in over 100 genes and there is evidence for the presence of as yet unidentified genes in a significant proportion of patients. We aimed at identifying a novel gene for an autosomal recessive form of early onset severe retinal dystrophy in a patient carrying no previously described mutations in known genes.MethodsAn integrated strategy including homozygosity mapping and whole exome sequencing was used to identify the responsible mutation. Functional tests were performed in the medaka fish (Oryzias latipes) model organism to gain further insight into the pathogenic role of the ADAMTS18 gene in eye and central nervous system (CNS) dysfunction.ResultsThis study identified, in the analyzed patient, a homozygous missense mutation in the ADAMTS18 gene, which was recently linked to Knobloch syndrome, a rare developmental disorder that affects the eye and the occipital skull. In vivo gene knockdown performed in medaka fish confirmed both that the mutation has a pathogenic role and that the inactivation of this gene has a deleterious effect on photoreceptor cell function.ConclusionThis study reveals that mutations in the ADAMTS18 gene can cause a broad phenotypic spectrum of eye disorders and contribute to shed further light on the complexity of retinal diseases.


PLOS ONE | 2012

Molecular Diagnosis of Usher Syndrome: Application of Two Different Next Generation Sequencing-Based Procedures

Danilo Licastro; Margherita Mutarelli; Ivana Peluso; Kornelia Neveling; Nienke Wieskamp; Rossella Rispoli; Diego Vozzi; Emmanouil Athanasakis; Angela D'Eustacchio; Mariateresa Pizzo; Francesca D'Amico; Carmela Ziviello; Francesca Simonelli; Antonella Fabretto; H. Scheffer; Paolo Gasparini; Sandro Banfi; Vincenzo Nigro

Usher syndrome (USH) is a clinically and genetically heterogeneous disorder characterized by visual and hearing impairments. Clinically, it is subdivided into three subclasses with nine genes identified so far. In the present study, we investigated whether the currently available Next Generation Sequencing (NGS) technologies are already suitable for molecular diagnostics of USH. We analyzed a total of 12 patients, most of which were negative for previously described mutations in known USH genes upon primer extension-based microarray genotyping. We enriched the NGS template either by whole exome capture or by Long-PCR of the known USH genes. The main NGS sequencing platforms were used: SOLiD for whole exome sequencing, Illumina (Genome Analyzer II) and Roche 454 (GS FLX) for the Long-PCR sequencing. Long-PCR targeting was more efficient with up to 94% of USH gene regions displaying an overall coverage higher than 25×, whereas whole exome sequencing yielded a similar coverage for only 50% of those regions. Overall this integrated analysis led to the identification of 11 novel sequence variations in USH genes (2 homozygous and 9 heterozygous) out of 18 detected. However, at least two cases were not genetically solved. Our result highlights the current limitations in the diagnostic use of NGS for USH patients. The limit for whole exome sequencing is linked to the need of a strong coverage and to the correct interpretation of sequence variations with a non obvious, pathogenic role, whereas the targeted approach suffers from the high genetic heterogeneity of USH that may be also caused by the presence of additional causative genes yet to be identified.


Biochemical and Biophysical Research Communications | 2003

Identification and characterization of C1orf36, a transcript highly expressed in photoreceptor cells, and mutation analysis in retinitis pigmentosa

Giovanni Lavorgna; Marta Lestingi; Carmela Ziviello; Francesco Testa; Francesca Simonelli; Maria Pia Manitto; R. Brancato; Maurizio Ferrari; Ernesto Rinaldi; Alfredo Ciccodicola; Sandro Banfi

By means of computational methods, we identified an uncharacterized human transcript, Chromosome 1 open reading frame 36 (C1orf36), that is expressed in the retina and that maps to 1q32.3. The cDNA contains an open reading frame of 585bp that encodes a 195-aminoacid protein with a predicted mass of 22.7kDa. An alternatively spliced transcript in a retinoblastoma cell line, encoding for a truncated peptide, was also identified. PCR experiments performed using human cDNA from several sources indicate that C1orf36 has a preferential expression in the retina. Accordingly, in situ hybridization experiments, performed using as probe a murine C1orf36 cDNA fragment, detected a hybridization signal on mouse retinal adult sections. The C1orf36 protein shares homology with putative proteins in Mus musculus and Fugu rubripes, suggesting evolutionary conservation of its function. Additional sequence analysis of the C1orf36 gene product predicts its subcellular mitochondrial localization and the presence of both evolutionary conserved phosphorylation sites and regions adopting a coiled-coil conformation. We also defined the genomic structure of the gene. This enabled us to perform a mutational analysis of the C1orf36 coding region of about 300 patients affected by retinitis pigmentosa. No pathological mutations were detected in this analysis.


Ppar Research | 2015

Pharmacogenomics of Drug Response in Type 2 Diabetes: Toward the Definition of Tailored Therapies?

Carla Pollastro; Carmela Ziviello; Valerio Costa; Alfredo Ciccodicola

Type 2 diabetes is one of the major causes of mortality with rapidly increasing prevalence. Pharmacological treatment is the first recommended approach after failure in lifestyle changes. However, a significant number of patients shows—or develops along time and disease progression—drug resistance. In addition, not all type 2 diabetic patients have the same responsiveness to drug treatment. Despite the presence of nongenetic factors (hepatic, renal, and intestinal), most of such variability is due to genetic causes. Pharmacogenomics studies have described association between single nucleotide variations and drug resistance, even though there are still conflicting results. To date, the most reliable approach to investigate allelic variants is Next-Generation Sequencing that allows the simultaneous analysis, on a genome-wide scale, of nucleotide variants and gene expression. Here, we review the relationship between drug responsiveness and polymorphisms in genes involved in drug metabolism (CYP2C9) and insulin signaling (ABCC8, KCNJ11, and PPARG). We also highlight the advancements in sequencing technologies that to date enable researchers to perform comprehensive pharmacogenomics studies. The identification of allelic variants associated with drug resistance will constitute a solid basis to establish tailored therapeutic approaches in the treatment of type 2 diabetes.

Collaboration


Dive into the Carmela Ziviello's collaboration.

Top Co-Authors

Avatar

Sandro Banfi

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Francesca Simonelli

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Francesco Testa

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Settimio Rossi

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Ernesto Rinaldi

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Valerio Costa

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Alberto Auricchio

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan Conte

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge