Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carmem S. Pfeifer is active.

Publication


Featured researches published by Carmem S. Pfeifer.


Brazilian Dental Journal | 2012

Monomers used in resin composites: degree of conversion, mechanical properties and water sorption/solubility

V.E.S. Gajewski; Carmem S. Pfeifer; Nívea Regina Fróes-Salgado; L.C.C. Boaro; Roberto R. Braga

The organic phase of resin composites is constituted by dimethacrylate resins, the most common monomers being the bisphenol A diglycidildimethacrylate (BisGMA), its ethoxylated version (BisEMA), triethylene glycol dimethacrylate (TEGDMA) and urethane dimethacrylate (UDMA). This study compared the homopolymers formed from the monomers used in restorative dental composites in terms of their degree of conversion (DC) and reaction kinetics (by near infra-red spectroscopy, n=3), mechanical properties (flexural modulus and strength in three point-bending, FM and FS, respectively, n=15), water sorption and solubility (WS and SL, respectively - ISO 4049, n=5). Materials were made photopolymerizable by the addition of camphoroquinone/dimethylamine ethyl methacrylate. TEGDMA showed the highest DC, followed by BisEMA, UDMA and BisGMA, both at 10 min and at 24h (p<0.001). UDMA showed the highest rate of polymerization, followed by TEGDMA, BisEMA and BisGMA (H(0)=13.254, p<0.001). UDMA and TEGDMA presented similar FM, significantly higher (p<0.001) than BisEMA and BisGMA, which in turn present statistically similar values (p>0.001). For FS, UDMA presented the highest value (p<0.001), followed by TEGDMA, then by BisEMA and BisGMA, which were statistically similar (p>0.001). BisGMA showed the highest WS, and TEGDMA and BisEMA the lowest. UDMA was statistically similar to all (H(0)=16.074, p<0.001). TEGDMA presented the highest SL, followed by UDMA, BisGMA and BisEMA (p<0.001). The tested homopolymers presented different behaviors in terms of polymerization kinetics, flexural properties, water sorption and solubility. Therefore, the use of copolymers is justified in order to obtain high DC and mechanical properties, as well as good resistance to water degradation.


Dental Materials | 2012

Curing efficiency of dental resin composites formulated with camphorquinone or trimethylbenzoyl-diphenyl-phosphine oxide

Luis Felipe Jochims Schneider; Larissa Maria Cavalcante; Scott A. Prahl; Carmem S. Pfeifer; J.L. Ferracane

OBJECTIVES Since photoinitiator systems for dental resins based on camphorquinone (CQ) present color disadvantages, trimethylbenzoyl-diphenyl-phosphine oxide (TPO) has been proposed as an alternative. However, there are remaining considerations about its curing efficiency. The aims of the present investigation were: to characterize the relationship between the photoinitiator absorption spectra and the light spectrum emitted from a QTH light (absorbed power density, PD(abs)); to evaluate the kinetics of polymerization, and the depth of cure for filled dimethacrylate resins formulated with different photoinitiator systems. METHODS CQ+EDMAB (control); TPO and TPO+EDMAB were used in 50:50 Bis-GMA/TEGDMA resins. Photoinitiator absorption and QTH-light emission were evaluated using a spectrophotometer and kinetics of polymerization with differential scanning calorimetry (DSC) (n=3). Depth of cure was analyzed by the scraping method (n=5), as recommended by ISO4049. One-way ANOVA/Tukeys (p<0.05) was used to analyze the results. RESULTS CQ presented higher PD(abs) than TPO (364 and 223 mW/cm(3), respectively). The DSC revealed that TPO and TPO+EDMAB produced a faster reaction than CQ+EDMAB. Composite formulated with CQ+EDMAB produced higher depth of cure (6.3±0.4 mm) than those with TPO (4.3±0.1) or TPO+EDMAB (4.2±0.3). SIGNIFICANCE Although CQ presented higher PD(abs) than TPO, formulations containing TPO exhibited higher reactivity than that with CQ. On the other hand, materials formulated with TPO demonstrated lower depth of cure than that with CQ. Therefore, its use as an alternative photoinitiator requires further investigation, with higher concentrations.


Dental Materials | 2014

Influence of photoinitiator system and nanofiller size on the optical properties and cure efficiency of model composites

Vinícius Esteves Salgado; Pedro Paulo A.C. Albuquerque; Larissa Maria Cavalcante; Carmem S. Pfeifer; Rafael R. Moraes; Luis Felipe Jochims Schneider

OBJECTIVE To establish the relationship between photoinitiator system and nanofiller size on the optical properties and cure efficiency of model composites. METHODS Model composites based on BisGMA/TEGDMA (60:40mol%) were loaded with 40wt% of 7nm or 16nm-sized filler particles. One of the following photoinitiator systems was added: camphorquinone (CQ) associated with an amine (EDMAB), monoacylphosphine oxide (TPO), or bysacylphosphine oxide (BAPO). The optical properties of disk-shaped specimens were measured 24h after curing and repeated after storage in water for 90 days and coffee for 15 days. A large spectrum LED unit (Bluephase G2, Ivoclar Vivadent) was used for photoactivation. CIE L*a*b* parameters, color difference (ΔE), and translucency parameter (TP) were calculated. Knoop hardness readings were taken at top and bottom composite surfaces. Cure efficiency was determined by bottom/top hardness ratio. Data were statistically analyzed at α=0.05 significance level. RESULTS Composites formulated with 16nm particles had higher CIE L* than those with 7nm particles in all storage conditions. BAPO-based composites generally had lower CIE a* than the other composites. The group TPO+16nm before storage and all groups with 16nm-sized particles after storage had lower CIE b* (i.e. lower degree of yellowing) than the other groups. TPO-based materials had higher color stability. The cure efficiency was not significantly affected by photoinitiator system or particle size. CQ+7nm had the lowest and BAPO+16nm the highest hardness values. SIGNIFICANCE Combination of photoinitiator system and filler particle size might affect the optical properties of composites, with low influence on cure efficiency.


Dental Materials | 2015

Thio-urethane oligomers improve the properties of light-cured resin cements

Ataís Bacchi; Rafael Leonardo Xediek Consani; Gedalias C. Martim; Carmem S. Pfeifer

Thio-urethanes were synthesized by combining 1,6-hexanediol-diissocyante (aliphatic) with pentaerythritol tetra-3-mercaptopropionate (PETMP) or 1,3-bis(1-isocyanato-1-methylethyl)benzene (aromatic) with trimethylol-tris-3-mercaptopropionate (TMP), at 1:2 isocyanate:thiol, leaving pendant thiols. Oligomers were added at 10-30 phr to BisGMA-UDMA-TEGDMA (5:3:2, BUT). 25 wt% silanated inorganic fillers were added. Commercial cement (Relyx Veneer, 3M-ESPE) was also evaluated with 10-20 phr of aromatic oligomer. Near-IR was used to follow methacrylate conversion (DC) and rate of polymerization (Rpmax). Mechanical properties were evaluated in three-point bending (ISO 4049) for flexural strength/modulus (FS/FM, and toughness), and notched specimens (ASTM Standard E399-90) for fracture toughness (KIC). Polymerization stress (PS) was measured on the Bioman. Volumetric shrinkage (VS, %) was measured with the bonded disk technique. Results were analyzed with ANOVA/Tukeys test (α=5%). In general terms, for BUT cements, conversion and mechanical properties in flexure increased for selected groups with the addition of thio-urethane oligomers. The aromatic versions resulted in greater FS/FM than aliphatic. Fracture toughness increased by two-fold in the experimental groups (from 1.17 ± 0.36 MPam(1/2) to around 3.23 ± 0.22 MPam(1/2)). Rpmax decreased with the addition of thio-urethanes, though the vitrification point was not statistically different from the control. VS and PS decreased with both oligomers. For the commercial cement, 20 phr of oligomer increased DC, vitrification, reduced Rpmax and also significantly increased KIC, and reduced PS and FM. Thio-urethane oligomers were shown to favorably modify conventional dimethacrylate networks. Significant reductions in polymerization stress were achieved at the same time conversion and fracture toughness increased.


Journal of Dental Research | 2014

Thio-urethanes Improve Properties of Dual-cured Composite Cements:

A. Bacchi; A. Dobson; Jack L. Ferracane; R. Consani; Carmem S. Pfeifer

This study aims at modifying dual-cure composite cements by adding thio-urethane oligomers to improve mechanical properties, especially fracture toughness, and reduce polymerization stress. Thiol-functionalized oligomers were synthesized by combining 1,3-bis(1-isocyanato-1-methylethyl)benzene with trimethylol-tris-3-mercaptopropionate, at 1:2 isocyanate:thiol. Oligomer was added at 0, 10 or 20 wt% to BisGMA-UDMA-TEGDMA (5:3:2, with 25 wt% silanated inorganic fillers) or to one commercial composite cement (Relyx Ultimate, 3M Espe). Near-IR was used to measure methacrylate conversion after photoactivation (700 mW/cm2 × 60s) and after 72 h. Flexural strength and modulus, toughness, and fracture toughness were evaluated in three-point bending. Polymerization stress was measured with the Bioman. The microtensile bond strength of an indirect composite and a glass ceramic to dentin was also evaluated. Results were analyzed with analysis of variance and Tukey’s test (α = 0.05). For BisGMA-UDMA-TEGDMA cements, conversion values were not affected by the addition of thio-urethanes. Flexural strength/modulus increased significantly for both oligomer concentrations, with a 3-fold increase in toughness at 20 wt%. Fracture toughness increased over 2-fold for the thio-urethane modified groups. Contraction stress was reduced by 40% to 50% with the addition of thio-urethanes. The addition of thio-urethane to the commercial cement led to similar flexural strength, toughness, and conversion at 72h compared to the control. Flexural modulus decreased for the 20 wt% group, due to the dilution of the overall filler volume, which also led to decreased stress. However, fracture toughness increased by up to 50%. The microtensile bond strength increased for the experimental composite cement with 20 wt% thio-urethane bonding for both an indirect composite and a glass ceramic. Novel dual-cured composite cements containing thio-urethanes showed increased toughness, fracture toughness and bond strength to dentin while demonstrating reduced contraction stress. All of these benefits are derived without compromising the methacrylate conversion of the resin component. The modification does not require changing the operatory technique.


Dental Materials | 2014

Mapping camphorquinone consumption, conversion and mechanical properties in methacrylates with systematically varied CQ/amine compositions

T.C. Guimarães; Luis Felipe Jochims Schneider; Roberto R. Braga; Carmem S. Pfeifer

OBJECTIVES To evaluate conversion, bulk mechanical properties and camphorquinone (CQ) consumption in methacrylate resins, comprising a range of overall initiator concentrations and CQ/amine ratios. METHODS BisGMA (Bisphenol-A glycidyl dimethacrylate), TEGDMA (triethyleneglycol dimethacrylate) and UDMA (urethane dimethacrylate) were mixed at a 1:1:1 molar ratio. CQ was used as the visible light photosensitizer, in combination with EDMAB (Ethyl p-dimethylamino benzoate), at 3:1, 2:1, 1:1, 1:2 and 1:3 weight ratios, at 0.5, 1.0, 1.5, 2.0 and 3.0 wt% overall initiator concentration. Butylhydroxytoluene was added at 0.05 wt% as an inhibitor. Unfilled resins were photoactivated with a dental light source (VIP Jr, Bisco) for 60 s at 600 mW/cm(2). Flexural strength/modulus were assessed in 2×1×10 mm bars, tested in three-point bending. Degree of conversion was assessed at the bottom of the same specimens using FT-RAMAN. CQ consumption was measured using a UV-vis spectrometer. Data were analyzed with two-way ANOVA/Tukey test (α=5%). RESULTS Lower conversion and inferior mechanical properties were observed with lower overall initiator concentrations and higher amine/CQ ratios. The lowest overall initiator concentration (0.5%) presented the statistically lowest conversion/properties results, except for the 1:3 amine/CQ ratio. For overall concentrations equal or greater to 1.5%, the amine/CQ ratio did not influence conversion or mechanical properties. CQ consumption was less efficient for the highest overall initiator concentrations and lower amine/CQ ratios. CLINICAL RELEVANCE Above 1.5 wt% overall initiator concentration, the conversion and general mechanical properties were independent of the initiator concentration. Therefore, there seems to be no benefit to increasing the initiator concentration above that level. At higher camphorquinone concentrations, light transmission and photosensitizer consumption becomes impaired, which could lead to decreased depth of cure and yellowing of the restoration.


Dental Materials | 2016

Characterization of methacrylate-based composites containing thio-urethane oligomers

Ataís Bacchi; Morgan Nelson; Carmem S. Pfeifer

OBJECTIVE To evaluate the ability of thio-urethane oligomers to improve the properties of restorative composite resins. METHODS Oligomers were synthesized by combining 1,6-hexanediol-diissocyante (aliphatic) with pentaerythritol tetra-3-mercaptopropionate (PETMP) or 1,3-bis(1-isocyanato-1-methylethyl)benzene (aromatic) with trimethylol-tris-3-mercaptopropionate (TMP), at 1:2 isocyanate:thiol, leaving pendant thiols. Oligomers were added at 0-20 wt% to BisGMA-TEGDMA (70-30 wt%). Silanated inorganic fillers were added (70 wt%). Materials were photoactivated at 800 mW/cm(2) filtered to 320-500 nm. Near-IR was used to follow degree of methacrylate conversion (DC). Mechanical properties were evaluated in three-point bending with 2 mm × 2 mm × 25 mm bars for flexural strength/modulus and toughness (FS/E, and T) according to ISO 4049, and 2 mm × 5 mm × 25 mm notched specimens for fracture toughness (KIC). Polymerization stress (PS) was measured on the Bioman. Results were analyzed with ANOVA/Tukeys test (α=5%). RESULTS Significant increase in DC was observed in thio-urethane-containing materials especially for the group with 20 wt% of aliphatic version. Materials composed by oligomers also promoted higher FS, E, and KIC in comparison to controls irrespective of thio-urethane type. A significant increase in toughness was detected by ANOVA, but not distinguished in the groups. The PS was significantly reduced by the presence of thio-urethane for almost all groups. CONCLUSIONS The use of thio-urethane oligomer to compose methacrylate-based restorative composite promote increase in DC, FS, E and KIC while significant reduces PS. SIGNIFICANCE A simple additive was shown to reduce stress while increasing convrersion and mechanical properties, mainly fracture toughness. This has he potential of increasing the service life of dental composites, without changing current operatory procedures.


Journal of Esthetic and Restorative Dentistry | 2015

Degree of Conversion, Depth of Cure, and Color Stability of Experimental Dental Composite Formulated with Camphorquinone and Phenanthrenequinone Photoinitiators

Pedro Paulo A.C. Albuquerque; Marcusv. L. Bertolo; Larissa Maria Cavalcante; Carmem S. Pfeifer; Luis F. S. Schneider

PURPOSE This study evaluated the applicability of 9,10-phenanthrenequinone (PQ) in experimental dental composites. MATERIALS Camphorquinone (CQ), PQ, ethyl 4-N,N-dimethylaminobenzoate (EDMAB) and diphenyliodonium salt (DPI) were employed. A mixture of 2,2-bis(4-[2-hydroxy-3-methacryloxypropoxy]phenyl)-propane/triethylene glycol dimethacrylate (60:40%) and silanated glass filler at 60% were used. A two-peak-based light-emitting diode (LED) was used. METHODS The photoinitiator absorption and the light emission spectra were determined by a Ultraviolet-visible spectroscopy and a spectroradiometer, respectively. Relative photon absorption (RPabs) was calculated. Fourier-transformed infrared spectroscopy analysis was used to determine the degree of conversion (DC). The optical properties were determined with a spectrophotometer. Depth of cure was assessed from adapted International Organization for Standardization (ISO) 4049. Results were analyzed with descriptive analysis, analysis of variance, and Tukeys test (α = 5%). RESULTS PQ showed higher RPabs than CQ. Regarding the DC, CQ + EDMAB (control), CQ + EDMAB + DPI, PQ + DPI, and PQ + EDMAB + DPI produced statistically similar results. Groups formulated with CQ presented higher depth of cure. Only the group formulated with CQ + EDMAB presented satisfactory color stability (ΔE < 3.3). CONCLUSION PQ presented higher RPabs than CQ and it was able to produce DC similar to CQ + EDMAB, when used with DPI. However, groups formulated with PQ produced lower depth of cure, greater yellowing, and less color stability than the traditional combination CQ and amine. CLINICAL SIGNIFICANCE Although research with novel photoinitiator systems should be encouraged, the traditional camphorquinone and amine pair remains as a reliable combination for the formulation of dental composites.


Dental Materials | 2014

A urethane-based multimethacrylate mixture and its use in dental composites with combined high-performance properties

Gedalias C. Martim; Tiago Roerto Detomini; Ivânia T.A. Schuquel; Eduardo Radovanovic; Carmem S. Pfeifer; Emerson M. Girotto

OBJECTIVES To synthesize and characterize different molar weight urethane multimethacrylates with a single stage (one-pot) procedure. To prepare and characterize the properties of related composites. METHODS Two methacrylate precursors were initially synthesized. Then, these precursors and the multimethacrylate system formed by their coupling were characterized by FTIR and (1)H NMR. The final product was used as a matrix (with TEGDMA and SiO2 silanized microparticles) in the preparation of composites and their physical and mechanical properties were compared to those of a bis-GMA-based resin. Water sorption and solubility measurements of the composites were also performed. RESULTS FTIR and NMR suggested that the proposed synthesis route yields a mixture of mainly urethane-di, -tri, and tetramethacrylates. The composites presented low polymerization shrinkage (e.g. 1.88±0.08% for a resin with 70% of SiO2) and high flexural strength (e.g. 124.74±9.68 MPa for a resin with 65% of SiO2) when compared to the bis-GMA based resin and other composites found to date. Water sorption and solubility results show that the composites were deemed compliant with ISO 4049 requirements. SIGNIFICANCE The mixture containing different molar weight of urethane multimethacrylates showed to be an excellent substitute for bis-GMA, achieving an equilibrium of properties (unlike reports elsewhere which show the enhancement of some parameters in detriment to others) and composites with low polymerization shrinkage, suitable microhardness and degree of conversion, and up to standard water sorption/solubility and flexural strength.


Journal of Dental Research | 2017

New Resins for Dental Composites

A. Fugolin; Carmem S. Pfeifer

Restorative composites have evolved significantly since they were first introduced in the early 1960s, with most of the development concentrating on the filler technology. This has led to improved mechanical properties, notably wear resistance, and has expanded the use of composites to larger posterior restorations. On the organic matrix side, concerns over the polymerization stress and the potential damage to the bonded interface have dominated research in the past 20 y, with many “low-shrinkage” composites being launched commercially. The lack of clinical correlation between the use of these materials and improved restoration outcomes has shifted the focus more recently to improving materials’ resistance to degradation in the oral environment, caused by aqueous solvents and salivary enzymes, as well as biofilm development. Antimicrobial and ester-free monomers have been developed in the recent past, and evidence is mounting for their potential benefit. This article reviews literature on the newest materials currently on the market and provides an outlook for the future developments needed to improve restoration longevity past the average 10 y.

Collaboration


Dive into the Carmem S. Pfeifer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ataís Bacchi

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emerson M. Girotto

Universidade Estadual de Maringá

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Sundfeld

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Gedalias C. Martim

Universidade Estadual de Maringá

View shared research outputs
Researchain Logo
Decentralizing Knowledge