Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carmen Frontela-Saseta is active.

Publication


Featured researches published by Carmen Frontela-Saseta.


Food and Chemical Toxicology | 2013

Anti-inflammatory properties of fruit juices enriched with pine bark extract in an in vitro model of inflamed human intestinal epithelium: The effect of gastrointestinal digestion

Carmen Frontela-Saseta; Rubén López-Nicolás; Carlos A. González-Bermúdez; Carmen Martínez-Graciá

Enrichment of fruit juices with pine bark extract (PBE) could be a strategy to compensate for phenolic losses during the gastrointestinal digestion. A coculture system with Caco-2 cells and RAW 264.7 macrophages was established as an in vitro model of inflamed human intestinal epithelium for evaluating the anti-inflammatory capacity of fruit juices enriched with PBE (0.5 g L(-1)) before and after in vitro digestion. The digestion of both PBE-enriched pineapple and red fruit juice led to significant changes in most of the analysed phenolic compounds. The in vitro inflammatory state showed cell barrier dysfunction and overproduction of IL-8, nitric oxide (NO) and reactive oxygen species (ROS). In the inflamed cells, incubation with nondigested samples reduced (P<0.05) the production of IL-8 and NO compared with digested samples. ROS production increased in the inflamed cells exposed to digested commercial red fruit juice (86.8±1.3%) compared with fresh juice (77.4±0.8%) and increased in the inflamed cells exposed to digested enriched red fruit juice (82.6±1.6%) compared with the fresh enriched juice (55.8±6%). The anti-inflammatory properties of PBE-enriched fruit juices decreased after digestion; further research on the bioavailability of the assayed compounds is needed to properly assess their usefulness for the treatment of gut inflammation.


Food Chemistry | 2014

Influence of in vitro gastrointestinal digestion of fruit juices enriched with pine bark extract on intestinal microflora

Rubén López-Nicolás; Carlos A. González-Bermúdez; Carmen Frontela-Saseta

The selective antimicrobial effect of fruit juices enriched with pine bark extract (PBE) (0.5 g/L) has been studied before and after in vitro gastrointestinal digestion. PBE (a concentrate of water-soluble bioflavonoids, mainly including phenolic compounds) has been proven to have high stability to the digestion process. Pure phenolic compounds such as gallic acid had a high antimicrobial effect on Staphylococcus aureus and Escherichia coli, maintaining the lactic acid bacteria population (≈100%). Otherwise, E. coli O157:H7 only growth 50% when PBE was added to the culture media, while a slight increase on the growth of lactobacilli and bifidobacteria was observed after exposition to the bark extract. Fresh fruit juices enriched with PBE showed the highest inhibitory effect on pathogenic intestinal bacterial growth, mainly E. coli and Enterococcus faecalis. The in vitro digestion process reduced the antibacterial effect of juices against most pathogenic bacteria in approximately 10%. However, the beneficial effect of fruit juices enriched with PBE (0.5 g/L) on gut microbiota is still considerable after digestion.


Food Chemistry | 2014

Effect of adding different thickening agents on the viscosity properties and in vitro mineral availability of infant formula.

Carlos A. González-Bermúdez; Carmen Frontela-Saseta; Rubén López-Nicolás; Carmen Martínez-Graciá

The effect of adding different thickening agents (locust bean gum (LBG), modified corn and rice starches (MCS, MRS)) to an infant formula on both in vitro mineral availability (Ca, Fe and Zn), quantified by atomic absorption spectrophotometry (AAS), and formula viscosity, after in vitro gastrointestinal digestion, was investigated. LBG was the most effective agent to increase formula thickness. However, it showed a negative effect on Ca, Fe and Zn in vitro solubility and dialysability. MCS and MRS only affected calcium solubility and dialysability when they were used at ⩾50% of the maximum legal limit. No negative effect was observed for Fe and Zn when modified starches were added at the different concentrations assessed. The phytate content in the thickening ingredients was also analysed. Despite finding a considerable amount of phytic acid in the raw ingredients, its final concentration in the infant formula was insufficient to decrease in vitro mineral availability.


Revista De Biologia Marina Y Oceanografia | 2012

Polisacáridos de algas como ingredientes funcionales en acuicultura marina: alginato, carragenato y ulvano

Patricia Peso-Echarri; Carmen Frontela-Saseta; Carlos A. González-Bermúdez; Carmen Martínez-Graciá

Resumen es: El uso excesivo de antimicrobianos en acuicultura puede seleccionar bacterias resistentes que puede suponer a un riesgo para la salud publica. Por esta r...


Food Chemistry | 2012

Sodium alginate as feed additive in cultured sea bream (Sparus aurata): Does it modify the quality of the flesh?

Patricia Peso-Echarri; Carmen Frontela-Saseta; M. Santaella-Pascual; A. García-Alcázar; I. Abdel; Carmen Martínez-Graciá

The objective of this study was to evaluate the effect of sodium alginate obtained from brown seaweed as a prebiotic supplement to the feed of reared sea bream (Sparus aurata). Addition of the alginate to a control diet was investigated at both concentrations 2% and 5%. Proximate composition in the flesh were not modified significantly by sodium alginate inclusion in the diet of the sea bream; however the fat and ash content in the specimens supplemented with 5% alginate were found to be significantly higher than those found in individuals who were fed the control diet. No significant differences in mineral content, fatty acid profiles, cholesterol content, texture parameters and sensory acceptability among the three studied groups. Results obtained in this study offer support for the use of alginate as a feed additive in sea bream diets since no significant effects were found in the flesh quality and characteristics of commercial size sea bream.


Journal of the Science of Food and Agriculture | 2017

Cultivation OF Solanum tuberosum in a former mining district for a safe human consumption integrating simulated digestion

M.J. Sierra; Rubén López-Nicolás; Carlos A. González-Bermúdez; Carmen Frontela-Saseta; Rocío Millán

BACKGROUND Potato (Solanum tuberosum) is a global crop and by far the most important non-cereal crop in the world. Therefore, it is necessary to assure its safe consumption. This is especially relevant in the case of its cultivation in abandoned mining areas, where the population tends to return to agriculture. In the present work, the objective is to evaluate the contribution to the diet of nutrients and contaminants of potato grown in soils from the Almadén area (mining district) by studying the intestinal absorption (in vitro) of the tuber, taking into account the preparation methods for its consumption. RESULTS The results of contaminant and nutrient contents show that the potato peel retains significantly more elements (mainly in the case of toxic elements) than the flesh. Furthermore, potato (peel and flesh) is a good source of iron. CONCLUSION It is recommended to boil potatoes with the peel in order to minimize nutrient loss and, before consumption, peeling them to eliminate possible risks due to contaminants. In addition, to minimize the risk due of mercury and to improve the levels of calcium, magnesium, potassium and sodium, it is recommended to add salt during the boiling process.


Current obesity reports | 2016

Satiety Innovations: Food Products to Assist Consumers with Weight Loss, Evidence on the Role of Satiety in Healthy Eating: Overview and In Vitro Approximation

Rubén López-Nicolás; Massimo Marzorati; Lia Scarabottolo; Jason Halford; Alexandra M. Johnstone; Carmen Frontela-Saseta; Angel M. Sanmartín; Joanne A. Harrold

The prevalence of overweight and obesity is increasing globally, driven by the availability of energy-dense palatable foods. Most dietary strategies fail because of hunger generated by calorie restriction, and interventions that specifically control hunger and/or promote fullness may aid success. Current consumers have a limited choice of satiety-enhancing products with proven health benefits, and innovative ways to produce new foods (as structural modification) to enhance satiety/satiation may provide new opportunities. However, this potential is hindered by the cost of product testing. Within the SATIN—SATiety INnovation project—an in vitro platform has been developed to offer a cost-effective means of assessing the potential satiation/satiety effect of novel foods. This combines in vitro technologies to assess changes in colonic bacteria metabolism, appetite hormone release and the stability and bioavailability of active compounds in the new products/ingredients. This article provides a brief review of nutrients for which an impact on short-term appetite regulation has been demonstrated, and a summary of the changes to food structure which can be used to produce a change in appetite expression. Furthermore, the SATIN in vitro platform is discussed as a means of assessing the impact of nutritional and structural manipulations on appetite.


Food Research International | 2015

Physicochemical properties of different thickeners used in infant foods and their relationship with mineral availability during in vitro digestion process

Carlos A. González-Bermúdez; Alejandra Castro; Daysi Perez-Rea; Carmen Frontela-Saseta; Carmen Martínez-Graciá; Lars Nilsson

Locust bean gum (LBG) and modified starches are commonly used as thickeners in food products for infants. However, there is no consensus on their possible effects on infant nutrition, especially on mineral availability. The aim of the present work was to characterize the effect of LBG, cross-linked, hydroxypropylated maize starch (Mhdp) and pre-gelatinized rice starch (gRS) on Ca, Fe and Zn availability during a gastric and intestinal in vitro digestion assay in relation to their physicochemical properties in solution (apparent viscosity, solubility, molar mass (M) and conformational properties) through the simulated digestion process. LBG gave the highest decrease in Ca and Fe gastric (17.96% and 17.6% respectively) and intestinal (19.5% and 13.5%) solubility with respect to the reference without thickeners. Ca (11.1%±1.1), Fe (2.77%±0.3) and Zn (7.78%±0.6) dialyzability was also lower than for the reference (23.4%±2.9; 19.65%±3.53 and 27.74%±3.3 respectively). LBG solubility remained stable during gastric digestion, decreasing significantly from a range of 65-69% to 61.1% after intestinal digestion. LBG viscosity remained stable during the digestion process, being these findings attributable to its resistance to enzymes. On the other hand, the addition to Mhdp or gRS slightly affected Ca and Fe solubility or Ca dialyzability, decreasing after gastric digestion and then increasing after intestinal digestion with respect to the reference. These results correlated to the changes in their viscosity enhancing properties, which increased during gastric digestion and decreased after intestinal digestion, being attributable to their digestion by pancreatic enzymes. Gastric digestion resulted in an increase in M for the modified starches (more pronounced for gRS). The increase in mineral solubility and dialyzability after intestinal digestion with respect to the gastric stage was explained by the degradation of starches by intestinal enzymes, which resulted in a decrease in apparent shear viscosity (from 1.2 to 1Pas, measured in a shear rate range 0.00-50s-1) and an increase in solubility (from 3 to 6% to approximately 70%) after intestinal digestion. In conclusion, LBG could be more effective than Mhdp and gRS as thickener, providing higher viscosity and resistance to digestive process. However, its negative effect on mineral solubility and dialyzability should be taken into account. On the contrary, Mhdp and gRS showed to be degraded after intestinal digestion.


Nutricion Hospitalaria | 2017

Aporte de hierro y zinc bioaccesible a la dieta de niños hondureños menores de 24 meses

Lorena Fernández-Palacios; Elsa Barrientos-Augustinus; Elizabeth Jirón de Caballero; Carmen Frontela-Saseta

Objective: In the present study we analyzed 18 baby food (10 made from traditional Honduran recipes, and 8 industrial baby food sold in that country) involving the staple food of Honduran excluded infants breast milk and infant formulas. Material and methods: The content and bioaccesibility (soluble and dialysable fractions) of Fe and Zn were determined. For thisin vitro gastrointestinal digestion in a first phase of gastric digestion (pepsin) followed by a second phase of intestinal digestion (with pancreatin and bile salts) was simulated. The atomic absorption spectrometry mineral content measured in soluble and dialyzable fractions. Results: Traditional porridges from Honduras (PTH) showed low density of micronutrients being the PTH prepared based on “rice with beans and greens”, “rice with ground beans” and “beans with banana” which had a higher content values of 1.96, 1.56, and 1.46 mg Fe/100 g, respectively, although in vitroavailability values below 50% of its content. For Zn in these recipes, the values found were very low being below the detection limit. In relation to industrial porridges (PIH), those of “rice”, “wheat with milk” and “5 cereals” they had a higher content of Fe (9.4, 8.53 and 7.56 mg Fe/100 g, respectively). Its availability in vitro was greater than 70% in all cases. PIH Zn showed values of 1.36, and 0.99 mg Zn/100 g samples of “wheat with milk” and “wheat with honey”, respectively, and increased availability of 75%. Conclusions: It is shown that PTH have some limitations in its formulation that makes the selected micronutrients are in fewer and even less bioaccessible, compared with PIH, so review is recommended to avoid supplementation of these micronutrients and help improve the nutritional status of the child population as Honduran model country in Central America.


Food Research International | 2017

In vitro effectiveness of recombinant human lactoferrin and its hydrolysate in alleviating LPS-induced inflammatory response

Esmat Aly; Rubén López-Nicolás; Aliaa Ali Darwish; Carmen Frontela-Saseta

This study aimed to evaluate the potential anti-inflammatory role of the most produced form of lactoferrin expressed in various expression systems (Fe-saturated recombinant human Lf, rhLf) and its hydrolysate in concentrations resembles that found in mature human milk. Co-culture model consisted of CaCo-2 and RAW 246.7 cell lines was used to evaluate the potential anti-inflammatory activity of rhLf and its hydrolysate. During this experiment, CaCo-2 monolayer permeability and integrity was assayed through the measurement of transepithelial electrical resistance (TEER values). Also, the production of reactive oxygen species (ROS), nitric oxide (NO) and different cytokines (IL-8, IL-1β, IL-6, IL-10, IL-12p70, and TNF-α) were measured. The treatment with rhLf and its hydrolysate protected the monolayer integrity against LPS effect and reduced IL-8 and ROS production. This effect was dependent on the dose and 2mgmL-1 of rhLf hydrolysate was more effective. The addition of rhLf and its hydrolysate to infant formula is a prominent step towards improving both infant formula functionality and newborn health. Thus, these functional ingredients could be incorporated in infant foods. In this context, ongoing researches are conducted to clarify this effect whether by using synthetic peptides or by using LPS-sepsis animal.

Collaboration


Dive into the Carmen Frontela-Saseta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge