Rubén López-Nicolás
University of Murcia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rubén López-Nicolás.
Food Chemistry | 2015
Rocío Pérez-Masiá; Rubén López-Nicolás; María Jesús Periago; Gaspar Ros; Jose M. Lagaron; Amparo López-Rubio
In this work, two different technologies (electrospraying and nanospray drying) were evaluated for the encapsulation of folic acid using both a whey protein concentrate (WPC) matrix and a commercial resistant starch. The morphology of the capsules, molecular organization of the matrices upon encapsulation, encapsulation efficiency, and stability of the folic acid within the capsules under different storage conditions and upon thermal exposure were studied. Results showed that spherical nano-, submicro- and microcapsules were obtained through both techniques, although electrospraying led to smaller capsule sizes and to an enhanced control over their size distribution. Greater encapsulation efficiency was observed using WPC as encapsulating matrix, probably related to interactions between the protein and folic acid which favoured the incorporation of the bioactive. The best results in terms of bioactive stabilization in the different conditions assayed were also obtained for the WPC capsules, although both materials and encapsulation techniques led to improved folic acid stability, especially under dry conditions.
Food and Chemical Toxicology | 2013
Carmen Frontela-Saseta; Rubén López-Nicolás; Carlos A. González-Bermúdez; Carmen Martínez-Graciá
Enrichment of fruit juices with pine bark extract (PBE) could be a strategy to compensate for phenolic losses during the gastrointestinal digestion. A coculture system with Caco-2 cells and RAW 264.7 macrophages was established as an in vitro model of inflamed human intestinal epithelium for evaluating the anti-inflammatory capacity of fruit juices enriched with PBE (0.5 g L(-1)) before and after in vitro digestion. The digestion of both PBE-enriched pineapple and red fruit juice led to significant changes in most of the analysed phenolic compounds. The in vitro inflammatory state showed cell barrier dysfunction and overproduction of IL-8, nitric oxide (NO) and reactive oxygen species (ROS). In the inflamed cells, incubation with nondigested samples reduced (P<0.05) the production of IL-8 and NO compared with digested samples. ROS production increased in the inflamed cells exposed to digested commercial red fruit juice (86.8±1.3%) compared with fresh juice (77.4±0.8%) and increased in the inflamed cells exposed to digested enriched red fruit juice (82.6±1.6%) compared with the fresh enriched juice (55.8±6%). The anti-inflammatory properties of PBE-enriched fruit juices decreased after digestion; further research on the bioavailability of the assayed compounds is needed to properly assess their usefulness for the treatment of gut inflammation.
Food Chemistry | 2014
Rubén López-Nicolás; Carlos A. González-Bermúdez; Carmen Frontela-Saseta
The selective antimicrobial effect of fruit juices enriched with pine bark extract (PBE) (0.5 g/L) has been studied before and after in vitro gastrointestinal digestion. PBE (a concentrate of water-soluble bioflavonoids, mainly including phenolic compounds) has been proven to have high stability to the digestion process. Pure phenolic compounds such as gallic acid had a high antimicrobial effect on Staphylococcus aureus and Escherichia coli, maintaining the lactic acid bacteria population (≈100%). Otherwise, E. coli O157:H7 only growth 50% when PBE was added to the culture media, while a slight increase on the growth of lactobacilli and bifidobacteria was observed after exposition to the bark extract. Fresh fruit juices enriched with PBE showed the highest inhibitory effect on pathogenic intestinal bacterial growth, mainly E. coli and Enterococcus faecalis. The in vitro digestion process reduced the antibacterial effect of juices against most pathogenic bacteria in approximately 10%. However, the beneficial effect of fruit juices enriched with PBE (0.5 g/L) on gut microbiota is still considerable after digestion.
Food Chemistry | 2014
Carlos A. González-Bermúdez; Carmen Frontela-Saseta; Rubén López-Nicolás; Carmen Martínez-Graciá
The effect of adding different thickening agents (locust bean gum (LBG), modified corn and rice starches (MCS, MRS)) to an infant formula on both in vitro mineral availability (Ca, Fe and Zn), quantified by atomic absorption spectrophotometry (AAS), and formula viscosity, after in vitro gastrointestinal digestion, was investigated. LBG was the most effective agent to increase formula thickness. However, it showed a negative effect on Ca, Fe and Zn in vitro solubility and dialysability. MCS and MRS only affected calcium solubility and dialysability when they were used at ⩾50% of the maximum legal limit. No negative effect was observed for Fe and Zn when modified starches were added at the different concentrations assessed. The phytate content in the thickening ingredients was also analysed. Despite finding a considerable amount of phytic acid in the raw ingredients, its final concentration in the infant formula was insufficient to decrease in vitro mineral availability.
Metabolic Engineering | 2016
Cristina Serrano-Amatriain; Rodrigo Ledesma-Amaro; Rubén López-Nicolás; Gaspar Ros; Alberto Jiménez; José L. Revuelta
Folic acid (vitamin B9) is the common name of a number of chemically related compounds (folates), which play a central role as cofactors in one-carbon transfer reactions. Folates are involved in the biosynthesis and metabolism of nucleotides and amino acids, as well as supplying methyl groups to a broad range of substrates, such as hormones, DNA, proteins, and lipids, as part of the methyl cycle. Humans and animals cannot synthesize folic acid and, therefore, need them in the diet. Folic acid deficiency is an important and underestimated problem of micronutrient malnutrition affecting billions of people worldwide. Therefore, the addition of folic acid as food additive has become mandatory in many countries thus contributing to a growing demand of the vitamin. At present, folic acid is exclusively produced by chemical synthesis despite its associated environmental burdens. In this work, we have metabolically engineered the industrial fungus Ashbya gossypii in order to explore its potential as a natural producer of folic acid. Overexpression of FOL genes greatly enhanced the synthesis of folates and identified GTP cyclohydrolase I as the limiting step. Metabolic flux redirection from competing pathways also stimulated folic acid production. Finally, combinatorial engineering synergistically increased the production of different bioactive forms of the folic vitamin. Overall, strains were constructed which produce 146-fold (6595µg/L) more vitamin than the wild-type and by far represents the highest yield reported.
Archive | 2013
Gemma Farré; Shaista Naqvi; Uxue Zorrilla-López; Georgina Sanahuja; Judit Berman; Gerhard Sandmann; Gaspar Ros; Rubén López-Nicolás; Richard M. Twyman; Paul Christou; Teresa Capell; Changfu Zhu
Micronutrient deficiency is a major global challenge because at any one time up to 50 % of the world’s population may suffer from diseases caused by a chronic insufficient supply of vitamins and minerals, and this largely reflects the lack of access to a diverse diet [1]. In developed countries, micronutrient deficiency is addressed by encouraging the consumption of fresh fruits and vegetables, along with supplementation and fortification programs to enhance the nutritional value of staple foods [2]. In contrast, the populations of developing countries typically subsist on a monotonous diet of milled cereal grains such as rice or maize, which are poor sources of vitamins and minerals. Strategies that have been proposed to overcome micronutrient deficiencies in developing countries include supplementation, fortification, and the implementation of conventional breeding and genetic engineering programs to generate nutrient-rich varieties of staple crops. Unfortunately, the first two strategies have been largely unsuccessful because of the insufficient funding, poor governance, and dysfunctional distribution network in developing country settings [3]. Biofortification programs based on conventional breeding have enjoyed only marginal success because of the limited available genetic diversity and the time required to develop crops with enhanced nutritional properties as well as desirable agronomic characteristics. It is also impossible to conceive of a conventional breeding strategy that would ever produce “nutritionally complete” cereals [2]. More promising results have been obtained by engineering the metabolic pathways leading to provitamin A, vitamin B9, and vitamin C (β-carotene, folate, and ascorbate) in the same transgenic corn line [4]. Genetic engineering therefore has immense potential to improve the nutritional properties of staple crops and contribute to better health, although a number of technical, economical, regulatory, and sociopolitical constraints remain to be addressed.
Journal of the Science of Food and Agriculture | 2017
M.J. Sierra; Rubén López-Nicolás; Carlos A. González-Bermúdez; Carmen Frontela-Saseta; Rocío Millán
BACKGROUND Potato (Solanum tuberosum) is a global crop and by far the most important non-cereal crop in the world. Therefore, it is necessary to assure its safe consumption. This is especially relevant in the case of its cultivation in abandoned mining areas, where the population tends to return to agriculture. In the present work, the objective is to evaluate the contribution to the diet of nutrients and contaminants of potato grown in soils from the Almadén area (mining district) by studying the intestinal absorption (in vitro) of the tuber, taking into account the preparation methods for its consumption. RESULTS The results of contaminant and nutrient contents show that the potato peel retains significantly more elements (mainly in the case of toxic elements) than the flesh. Furthermore, potato (peel and flesh) is a good source of iron. CONCLUSION It is recommended to boil potatoes with the peel in order to minimize nutrient loss and, before consumption, peeling them to eliminate possible risks due to contaminants. In addition, to minimize the risk due of mercury and to improve the levels of calcium, magnesium, potassium and sodium, it is recommended to add salt during the boiling process.
Current obesity reports | 2016
Rubén López-Nicolás; Massimo Marzorati; Lia Scarabottolo; Jason Halford; Alexandra M. Johnstone; Carmen Frontela-Saseta; Angel M. Sanmartín; Joanne A. Harrold
The prevalence of overweight and obesity is increasing globally, driven by the availability of energy-dense palatable foods. Most dietary strategies fail because of hunger generated by calorie restriction, and interventions that specifically control hunger and/or promote fullness may aid success. Current consumers have a limited choice of satiety-enhancing products with proven health benefits, and innovative ways to produce new foods (as structural modification) to enhance satiety/satiation may provide new opportunities. However, this potential is hindered by the cost of product testing. Within the SATIN—SATiety INnovation project—an in vitro platform has been developed to offer a cost-effective means of assessing the potential satiation/satiety effect of novel foods. This combines in vitro technologies to assess changes in colonic bacteria metabolism, appetite hormone release and the stability and bioavailability of active compounds in the new products/ingredients. This article provides a brief review of nutrients for which an impact on short-term appetite regulation has been demonstrated, and a summary of the changes to food structure which can be used to produce a change in appetite expression. Furthermore, the SATIN in vitro platform is discussed as a means of assessing the impact of nutritional and structural manipulations on appetite.
ChemBioChem | 2010
Or Raifman; Sofiya Kolusheva; Saïd El Kazzouli; Dina M. Sigano; Noemi Kedei; Nancy E. Lewin; Rubén López-Nicolás; Ana Ortiz‐Espin; Juan C. Gómez-Fernández; Peter M. Blumberg; Victor E. Marquez; Senena Corbalán-García; Raz Jelinek
Synthetic diacylglycerol‐lactones (DAG‐lactones) are effective modulators of critical cellular signaling pathways, downstream of the lipophilic second messenger diacylglycerol, that activate a host of protein kinase C (PKC) isozymes and other nonkinase proteins that share similar C1 membrane‐targeting domains with PKC. A fundamental determinant of the biological activity of these amphiphilic molecules is the nature of their interactions with cellular membranes. This study examines the biological properties of charged DAG‐lactones exhibiting different alkyl groups attached to the heterocyclic nitrogen of an α‐pyridylalkylidene chain, and particularly the relationship between membrane interactions of the substituted DAG‐lactones and their respective biological activities. Our results suggest that bilayer interface localization of the N‐alkyl chain in the R2 position of the DAG‐lactones inhibits translocation of PKC isoenzymes onto the cellular membrane. However, the orientation of a branched alkyl chain at the bilayer surface facilitates PKC binding and translocation. This investigation emphasizes that bilayer localization of the aromatic side residues of positively charged DAG‐lactone derivatives play a central role in determining biological activity, and that this factor contributes to the diversity of biological actions of these synthetic biomimetic ligands.
Food Research International | 2017
Esmat Aly; Rubén López-Nicolás; Aliaa Ali Darwish; Carmen Frontela-Saseta
This study aimed to evaluate the potential anti-inflammatory role of the most produced form of lactoferrin expressed in various expression systems (Fe-saturated recombinant human Lf, rhLf) and its hydrolysate in concentrations resembles that found in mature human milk. Co-culture model consisted of CaCo-2 and RAW 246.7 cell lines was used to evaluate the potential anti-inflammatory activity of rhLf and its hydrolysate. During this experiment, CaCo-2 monolayer permeability and integrity was assayed through the measurement of transepithelial electrical resistance (TEER values). Also, the production of reactive oxygen species (ROS), nitric oxide (NO) and different cytokines (IL-8, IL-1β, IL-6, IL-10, IL-12p70, and TNF-α) were measured. The treatment with rhLf and its hydrolysate protected the monolayer integrity against LPS effect and reduced IL-8 and ROS production. This effect was dependent on the dose and 2mgmL-1 of rhLf hydrolysate was more effective. The addition of rhLf and its hydrolysate to infant formula is a prominent step towards improving both infant formula functionality and newborn health. Thus, these functional ingredients could be incorporated in infant foods. In this context, ongoing researches are conducted to clarify this effect whether by using synthetic peptides or by using LPS-sepsis animal.