Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carmen González-Bosch is active.

Publication


Featured researches published by Carmen González-Bosch.


Molecular Plant-microbe Interactions | 2009

Hexanoic Acid-Induced Resistance Against Botrytis cinerea in Tomato Plants

Begonya Vicedo; Victor Flors; María de la O. Leyva; Ivan Finiti; Zhana Kravchuk; María Dolores Real; Pilar García-Agustín; Carmen González-Bosch

We have demonstrated that root treatment with hexanoic acid protects tomato plants against Botrytis cinerea. Hexanoic acid-induced resistance (Hx-IR) was blocked in the jasmonic acid (JA)-insensitive mutant jai1 (a coi1 homolog) and in the abscisic acid (ABA)-deficient mutant flacca (flc). Upon infection, the LoxD gene as well as the oxylipin 12-oxo-phytodienoic acid and the bioactive molecule JA-Ile were clearly induced in treated plants. However, the basal ABA levels were not altered. Hexanoic acid primed callose deposition against B. cinerea in a cultivar-dependent manner. Treated plants from Ailsa Craig, Moneymaker, and Rheinlands Ruhm showed increased callose deposition but not from Castlemart. Hexanoic acid did not prime callose accumulation in flc plants upon B. cinerea infection; therefore, ABA could act as a positive regulator of Hx-IR by enhancing callose deposition. Furthermore, although hexanoic acid protected the JA-deficient mutant defensless1 (def1), the priming for callose was higher than in the wild type. This suggests a link between JA and callose deposition in tomato. Hence, the obtained results support the idea that callose, oxylipins, and the JA-signaling pathway are involved in Hx-IR against B. cinerea. Moreover our data support the relevance of JA-signaling for basal defense against this necrotroph in tomato. Hexanoic acid also protected against Pseudomonas syringae, indicating a broad-spectrum effect for this new inducer.


Plant Physiology | 1996

Differential Expression of Two Endo-1,4-[beta]-Glucanase Genes in Pericarp and Locules of Wild-Type and Mutant Tomato Fruit

Carmen González-Bosch; David A. Brummell; Alan B. Bennett

The mRNA accumulation of two endo-1,4-[beta]-D-glucanase genes, Cel1 and Cel2, was examined in the pericarp and locules throughout the development of normal tomato (Lycopersicon esculentum) fruit and the ripening-impaired mutants rin and Nr. Both Cel1 and Cel2 were expressed transiently at the earliest stages of fruit development during a period corresponding to cell division and early cell expansion. In the pericarp, the mRNA abundance of both genes increased markedly at the breaker stage; the level of Cel1 mRNA decreased later in ripening, and that of Cel2 increased progressively. Cel2 mRNA levels also increased at the breaker stage in locules but after initial locule liquefaction was already complete. In rin fruit mRNA abundance of Cel1 was reduced and Cel2 was virtually absent, whereas in Nr Cel1 was expressed at wild-type levels and Cel2 was reduced. In wild-type fruit ethylene treatment slightly promoted the mRNA accumulation of both genes. In rin fruit ethylene treatment strongly increased the mRNA abundance of Cel1 to an extent greater than in wild-type fruit, but Cel2 mRNA was absent even after ethylene treatment. These two endo-1,4-[beta]-D-glucanase genes, therefore, do not show coordinated expression during fruit development and are subject to distinct regulatory control. These results suggest that the product of the Cel2 gene contributes to ripening-associated cell-wall changes.


Molecular Plant Pathology | 2013

Hexanoic acid is a resistance inducer that protects tomato plants against Pseudomonas syringae by priming the jasmonic acid and salicylic acid pathways

Loredana Scalschi; Begonya Vicedo; Gemma Camañes; Emma Fernández-Crespo; Leonor Lapeña; Carmen González-Bosch; Pilar García-Agustín

Hexanoic acid-induced resistance (Hx-IR) is effective against several pathogens in tomato plants. Our study of the mechanisms implicated in Hx-IR against Pseudomonas syringae pv. tomato DC3000 suggests that hexanoic acid (Hx) treatment counteracts the negative effect of coronatine (COR) and jasmonyl-isoleucine (JA-Ile) on the salicylic acid (SA) pathway. In Hx-treated plants, an increase in the expression of jasmonic acid carboxyl methyltransferase (JMT) and the SA marker genes PR1 and PR5 indicates a boost in this signalling pathway at the expense of a decrease in JA-Ile. Moreover, Hx treatment potentiates 12-oxo-phytodienoic acid accumulation, which suggests that this molecule might play a role per se in Hx-IR. These results support a positive relationship between the SA and JA pathways in Hx-primed plants. Furthermore, one of the mechanisms of virulence mediated by COR is stomatal re-opening on infection with P. syringae. In this work, we observed that Hx seems to inhibit stomatal opening in planta in the presence of COR, which suggests that, on infection in tomato, this treatment suppresses effector action to prevent bacterial entry into the mesophyll.


Journal of Plant Physiology | 2011

Priming for JA-dependent defenses using hexanoic acid is an effective mechanism to protect Arabidopsis against B. cinerea

Zhana Kravchuk; Begonya Vicedo; Victor Flors; Gemma Camañes; Carmen González-Bosch; Pilar García-Agustín

Soil drench treatments with hexanoic acid can effectively protect Arabidopsis plants against Botrytis cinerea through a mechanism based on a stronger and faster accumulation of JA-dependent defenses. Plants impaired in ethylene, salicylic acid, abscisic acid or glutathion pathways showed intact protection by hexanoic acid upon B. cinerea infection. Accordingly, no significant changes in the SA marker gene PR-1 in either the SA or ABA hormone balance were observed in the infected and treated plants. In contrast, the JA signaling pathway showed dramatic changes after hexanoic acid treatment, mainly when the pathogen was present. The impaired JA mutants, jin1-2 and jar1, were unable to display hexanoic acid priming against the necrotroph. In addition, hexanoic acid-treated plants infected with B. cinerea showed priming in the expression of the PDF1.2, PR-4 and VSP1 genes implicated in the JA pathways. Moreover, JA and OPDA levels were primed at early stages by hexanoic acid. Treatments also stimulated increased callose accumulation in response to the pathogen. Although callose accumulation has proved an effective IR mechanism against B. cinerea, it is apparently not essential to express hexanoic acid-induced resistance (HxAc-IR) because the mutant pmr4.1 (callose synthesis defective mutant) is protected by treatment. We recently described how hexanoic acid treatments can protect tomato plants against B. cinerea by stimulating ABA-dependent callose deposition and by priming OPDA and JA-Ile production. We clearly demonstrate here that Hx-IR is a dependent plant species, since this acid protects Arabidopsis plants against the same necrotroph by priming JA-dependent defenses without enhancing callose accumulation.


Molecular Microbiology | 1992

The POT1 gene for yeast peroxisomal thiolase is subject to three different mechanisms of regulation

J. Carlos Igual; Carmen González-Bosch; Luis Franco; José E. Pérez-Ortín

Summary The Saccharomyces cerevisiae POT1 gene is, as are other yeast peroxisomal protein genes, inducible by fatty acids and repressible by glucose. We have now found that it is also induced during the stationary phase of the culture. To investigate these three regulatory circuits, we have studied the mRNA levels of regulatory mutants as well as the changes in chromatin structure upon gene activation. We conclude that the regulation of transcriptional activity in glucose repression, oleate induction, and stationary phase induction follow different molecular mechanisms. We suggest that this multiplicity of regulatory mechanisms may represent a general rule for the yeast peroxisomal protein genes.


Molecular Plant Pathology | 2014

Hexanoic acid protects tomato plants against Botrytis cinerea by priming defence responses and reducing oxidative stress

Ivan Finiti; María de la O. Leyva; Begonya Vicedo; Rocío Gómez-Pastor; Jaime López-Cruz; Pilar García-Agustín; María Dolores Real; Carmen González-Bosch

Treatment with the resistance priming inducer hexanoic acid (Hx) protects tomato plants from Botrytis cinerea by activating defence responses. To investigate the molecular mechanisms underlying hexanoic acid-induced resistance (Hx-IR), we compared the expression profiles of three different conditions: Botrytis-infected plants (Inf), Hx-treated plants (Hx) and Hx-treated + infected plants (Hx+Inf). The microarray analysis at 24 h post-inoculation showed that Hx and Hx+Inf plants exhibited the differential expression and priming of many Botrytis-induced genes. Interestingly, we found that the activation by Hx of other genes was not altered by the fungus at this time point. These genes may be considered to be specific targets of the Hx priming effect and may help to elucidate its mechanisms of action. It is noteworthy that, in Hx and Hx+Inf plants, there was up-regulation of proteinase inhibitor genes, DNA-binding factors, enzymes involved in plant hormone signalling and synthesis, and, remarkably, the genes involved in oxidative stress. Given the relevance of the oxidative burst occurring in plant-pathogen interactions, the effect of Hx on this process was studied in depth. We showed by specific staining that reactive oxygen species (ROS) accumulation in Hx+Inf plants was reduced and more restricted around infection sites. In addition, these plants showed higher ratios of reduced to oxidized glutathione and ascorbate, and normal levels of antioxidant activities. The results obtained indicate that Hx protects tomato plants from B. cinerea by regulating and priming Botrytis-specific and non-specific genes, preventing the harmful effects of oxidative stress produced by infection.


Plant Signaling & Behavior | 2007

A Tolerant Behavior in Salt-Sensitive Tomato Plants can be Mimicked by Chemical Stimuli

Victor Flors; M. Paradis; J. Garcia-Andrade; Miguel Cerezo; Carmen González-Bosch; Pilar García-Agustín

Lycopersicon esculentum plants exhibit increased salt stress tolerance following treatment with adipic acid monoethylester and 1,3-diaminepropane (DAAME), known as an inducer of resistance against biotic stress in tomato and pepper. For an efficient water and nutrient uptake, plants should adapt their water potential to compensate a decrease in water soil potential produced by salt stress. DAAME-treated plants showed a faster and stronger water potential reduction and an enhanced proline accumulation. Salinity-induced oxidative stress was also ameliorated by DAAME treatments. Oxidative membrane damage and ethylene emission were both reduced in DAAME-treated plants. This effect is probably a consequence of an increase of both non enzymatic antioxidant activity as well as peroxidase activity. DAAME-mediated tolerance resulted in an unaltered photosynthetic rate and a stimulation of the decrease in transpiration under stress conditions without a cost in growth due to salt stress. The reduction in transpiration rate was concomitant with a reduction in phytotoxic Na+ and Cl- accumulation under saline stress. Interestingly, the ABA deficient tomato mutant sitiens was insensitive to DAAME-induced tolerance following NaCl stress exposure. Additionally, DAAME treatments increased the ABA content of leaves, therefore, an intact ABA signalling pathway seems to be important to express DAAME-induced salt tolerance. Here, we show a possibility of enhance tomato stress tolerance by chemical induction of the major plant defences against salt stress. DAAME-induced tolerance against salt stress could be complementary to or share elements with induced resistance against biotic stress. This might be the reason for the observed wide spectrum of effectiveness of this compound.


Archives of Microbiology | 2006

Control of the phytopathogen Botrytis cinerea using adipic acid monoethyl ester

Begonya Vicedo; María de la O. Leyva; Victor Flors; Ivan Finiti; Gemma del Amo; Dale Walters; María Dolores Real; Pilar García-Agustín; Carmen González-Bosch

The in vitro and in vivo antifungal activity of adipic acid monoethyl ester (AAME) on the necrotrophic pathogen Botrytis cinerea has been studied. This chemical effectively controlled this important phytopathogen, inhibited spore germination and mycelium development at non-phytotoxic concentrations. The effectiveness of AAME treatment is concentration-dependent and influenced by pH. Spore germination in the presence of AAME is stopped at a very early stage, preventing germ tube development. In addition, cytological changes such as retraction of the conidial cytoplasm in the fungus are observed. AAME was also found to act on membrane integrity, affecting permeability without exhibiting lytic activity, as described previously for other antifungal compounds. Polyamine content in the mycelium of B. cinerea was also affected in response to AAME treatment, resulting in putrescine reduction and spermine accumulation similar to a number of antifungal agents. Microscopic observation of treated conidia after inoculation on tomato leaves suggested that inhibited spores are not able to attach to and penetrate the leaf. Finally, AAME completely suppressed the grey mould disease of tomato fruits under controlled inoculation conditions, providing evidence for its efficacy in a biological context and for the potential use of this chemical as an alternative fungicide treatment.


Biochemical and Biophysical Research Communications | 2003

Identification of a copper chaperone from tomato fruits infected with Botrytis cinerea by differential display.

Carmen González-Bosch

Differential display was used to isolate tomato genes responding to fungal infection. Here we describe the isolation and characterization of a gene that is down-regulated in tomato fruits infected with the phytopathogen Botrytis cinerea. The cDNA identified encodes a protein that shares sequence similarity to the amino terminal region of CCH, a copper chaperone from Arabidopsis thaliana, that participates in intracellular copper homeostasis by delivering Cu to the secretory pathway. The fact that this newly characterized tomato gene, referred to as LeCCH (Lycopersicon esculentum copper chaperone), be differentially expressed after fungal infection, suggests an interesting relationship between copper homeostasis and plant defense responses. LeCCH contains the conserved metal-binding domain MXCXGC but interestingly, lacks the C-terminal extension present in previously described plant members of this copper chaperone family, that seems to be involved in metallochaperone intercellular transport. This fact indicates that LeCCH is a novel plant copper chaperone that could act locally at the infection site, affecting the copper homeostasis in this particular stress situation.


Journal of Plant Physiology | 2015

Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea

Carlos Angulo; María de la O. Leyva; Ivan Finiti; Jaime López-Cruz; Emma Fernández-Crespo; Pilar García-Agustín; Carmen González-Bosch

Resistance of tomato (Solanum Lycopersicum) to the fungal pathogen Botrytis cinerea requires complex interplay between hormonal signalling. In this study, we explored the involvement of new oxylipins in the tomato basal and induced response to this necrotroph through the functional analysis of the tomato α-dioxygenase2 (α-DOX2)-deficient mutant divaricata. We also investigated the role of SA in the defence response against this necrotrophic fungus using SA-deficient tomato nahG plants. The plants lacking dioxigenase α-DOX2, which catalyses oxylipins production from fatty acids, were more susceptible to Botrytis, and hexanoic acid-induced resistance (Hx-IR) was impaired; hence α-DOX2 is required for both tomato defence and the enhanced protection conferred by natural inducer hexanoic acid (Hx) against B. cinerea. The divaricata plants accumulated less pathogen-induced callose and presented lower levels of jasmonic acid (JA) and 12-oxo-phytodienoic acid (OPDA) upon infection if compared to the wild type. Glutathion-S-transferase (GST) gene expression decreased and ROS production significantly increased in Botrytis-infected divaricata plants. These results indicate that absence of α-DOX2 influences the hormonal changes, oxidative burst and callose deposition that occur upon Botrytis infection in tomato. The study of SA-deficient nahG tomato plants showed that the plants with low SA levels displayed increased resistance to Botrytis, but were unable to display Hx-IR. This supports the involvement of SA in Hx-IR. NaghG plants displayed reduced callose and ROS accumulation upon infection and an increased GST expression. This reflects a positive relationship between SA and these defensive mechanisms in tomato. Finally, Hx boosted the pathogen-induced callose in nahG plants, suggesting that this priming mechanism is SA-independent. Our results support the involvement of the oxylipins pathway and SA in tomato response to Botrytis, probably through complex crosstalk of the hormonal balance with callose and ROS accumulation, and reinforce the role of the oxidative stress in the outcome of the plant-Botrytis interaction.

Collaboration


Dive into the Carmen González-Bosch's collaboration.

Top Co-Authors

Avatar

Ivan Finiti

University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José Hernández-Yago

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Vicente J. Miralles

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge