Carolina Rausell
University of Valencia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carolina Rausell.
Applied and Environmental Microbiology | 2006
Rose Gomes Monnerat; Érica Soares Martins; Paulo Roberto Queiroz; Sergio Orduz; Gabriela Jaramillo; Graciela B. Benintende; Jorge G. Cozzi; M. Dolores Real; Amparo C. Martínez-Ramírez; Carolina Rausell; Jairo Cerón; Jorge E. Ibarra; M. Cristina Del Rincón-Castro; Ana M. Espinoza; Luis Meza-Basso; Lizbeth Cabrera; Mario Soberón; Alejandra Bravo
ABSTRACT Bacillus thuringiensis strains isolated from Latin American soil samples that showed toxicity against three Spodoptera frugiperda populations from different geographical areas (Mexico, Colombia, and Brazil) were characterized on the basis of their insecticidal activity, crystal morphology, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of parasporal crystals, plasmid profiles, and cry gene content. We found that the different S. frugiperda populations display different susceptibilities to the selected B. thuringiensis strains and also to pure preparations of Cry1B, Cry1C, and Cry1D toxins. Binding assays performed with pure toxin demonstrated that the differences in the toxin binding capacities of these insect populations correlated with the observed differences in susceptibility to the three Cry toxins analyzed. Finally, the genetic variability of the three insect populations was analyzed by random amplification of polymorphic DNA-PCR, which showed significant genetic diversity among the three S. frugiperda populations analyzed. The data presented here show that the genetic variability of S. frugiperda populations should be carefully considered in the development of insect pest control strategies, including the deployment of genetically modified maize in different geographical regions.
Insect Biochemistry and Molecular Biology | 2001
Inmaculada García-Robles; Axel Gruppe; Amparo C. Martínez-Ramírez; Carolina Rausell; María Dolores Real; Alejandra Bravo
The mode of action of Cry toxins has been described principally in lepidopteran insects as a multistep process. In this work we describe the mode of action of a Cry toxin active in the common pine sawfly Diprion pini (Hymenoptera, Diprionidae), considered a major forest pest in Europe. Strain PS86Q3 contains a long bipyramidal crystal composed of five major proteins. The N-terminal sequence shows that the 155 kDa protein corresponds to Cry5B toxin and the other proteins belong to the Cry5A subgroup. PCR analysis indicates the presence of cry5Ac and cry5Ba genes, suggesting that Cry5A protein should be Cry5Ac. Activation of protoxins with trypsin or with midgut content from D. pini and Cephacia abietis (Hymenoptera, Pamphiliidae) (spruce webspinning sawfly), another important hymenopteran forest pest, produced a single 75 kDa toxin that corresponded to Cry5A by N-terminal sequence and is responsible for the insecticidal activity. Homologous competition experiments with D. pini and C. abietis brush border membrane vesicles (BBMV) showed that the binding interaction of Cry5A is specific. Membrane potential measurements using a fluorescent dye indicate that Cry5A toxin at nM concentration caused immediate permeability changes in the BBMV isolated from both hymenopteran larvae. The initial response and the sustained permeability change are cationic as previously shown for Cry1 toxins. These results indicate that the hymenopteran specific Cry5A toxin exerts toxicity by a similar mechanism as Cry1 toxins.
Applied and Environmental Microbiology | 2000
Carolina Rausell; Amparo C. Martínez-Ramírez; Inmaculada García-Robles; María Dolores Real
ABSTRACT The insecticidal activity and receptor binding properties ofBacillus thuringiensis Cry1A toxins towards the forest pests Thaumetopoea pityocampa (processionary moth) andLymantria monacha (nun moth) were investigated. Cry1Aa, Cry1Ab, and Cry1Ac were highly toxic (corresponding 50% lethal concentration values: 956, 895, and 379 pg/μl, respectively) to first-instar T. pityocampa larvae. During larval development, Cry1Ab and Cry1Ac toxicity decreased with increasing age, although the loss of activity was more pronounced for Cry1Ab. Binding assays with 125I-labelled Cry1Ab and brush border membrane vesicles from T. pityocampa first- and last-instar larvae detected a remarkable decrease in the overall Cry1Ab binding affinity in last-instar larvae, although saturable Cry1Ab binding to both instars was observed. Homologous competition experiments demonstrated the loss of one of the two Cry1Ab high-affinity binding sites detected in first-instar larvae. Growth inhibition assays with sublethal doses of Cry1Aa, Cry1Ab, and Cry1Ac in L. monacha showed that all three toxins were able to delay molting from second instar to third instar. Specific saturable binding of Cry1Ab was detected only in first- and second-instar larvae. Cry1Ab binding was not detected in last-instar larvae, although specific binding of Cry1Aa and Cry1Ac was observed. These results demonstrate a loss of Cry1Ab binding sites during development on the midgut epithelium of T. pityocampa and L. monacha, correlating in T. pityocampa with a decrease in Cry1Ab toxicity with increasing age.
PLOS ONE | 2013
Estefanía Contreras; Carolina Rausell; M. Dolores Real
Susceptibility of Tribolium castaneum (Tc) larvae was determined against spore-crystal mixtures of five coleopteran specific and one lepidopteran specific Bacillus thuringiensis Cry toxin producing strains and those containing the structurally unrelated Cry3Ba and Cry23Aa/Cry37Aa proteins were found toxic (LC50 values 13.53 and 6.30 µg spore-crystal mixture/µL flour disc, respectively). Using iTRAQ combined with LC-MS/MS allowed the discovery of seven novel differentially expressed proteins in early response of Tc larvae to the two active spore-crystal mixtures. Proteins showing a statistically significant change in treated larvae compared to non-intoxicated larvae fell into two major categories; up-regulated proteins were involved in host defense (odorant binding protein C12, apolipophorin-III and chemosensory protein 18) and down-regulated proteins were linked to metabolic pathways affecting larval metabolism and development (pyruvate dehydrogenase Eα subunit, cuticular protein, ribosomal protein L13a and apolipoprotein LI-II). Among increased proteins, Odorant binding protein C12 showed the highest change, 4-fold increase in both toxin treatments. The protein displayed amino acid sequence and structural homology to Tenebrio molitor 12 kDa hemolymph protein b precursor, a non-olfactory odorant binding protein. Analysis of mRNA expression and mortality assays in Odorant binding protein C12 silenced larvae were consistent with a general immune defense function of non-olfactory odorant binding proteins. Regarding down-regulated proteins, at the transcriptional level, pyruvate dehydrogenase and cuticular genes were decreased in Tc larvae exposed to the Cry3Ba producing strain compared to the Cry23Aa/Cry37Aa producing strain, which may contribute to the developmental arrest that we observed with larvae fed the Cry3Ba producing strain. Results demonstrated a distinct host transcriptional regulation depending upon the Cry toxin treatment. Knowledge on how insects respond to Bt intoxication will allow designing more effective management strategies for pest control.
Journal of Invertebrate Pathology | 2013
Estefanía Contreras; Carolina Rausell; M. Dolores Real
In this study, a 2.1-fold Apolipophorin-III mRNA up-regulation was found in Tribolium castaneum larvae challenged with Bacillus thuringiensis Cry3Ba spore-crystal mixture. Knockdown of Apolipophorin-III by RNAi resulted in increased T. castaneum larvae susceptibility following Cry3Ba spore-crystal treatment, demonstrating Apolipophorin-III involvement in insect defense against B. thuringiensis. We showed that Apolipophorin-III participates in T. castaneum immune response to B. thuringiensis activating the prophenoloxidase cascade since: (i) phenoloxidase activity significantly increased after Cry3Ba spore-crystal treatment compared to untreated or Cry1Ac spore-crystal treated larvae and (ii) phenoloxidase activity in Cry3Ba spore-crystal treated Apolipophorin-III silenced larvae was 71±14% lower than that of non-silenced intoxicated larvae.
Journal of Biological Chemistry | 2013
Estefanía Contreras; Michael Schoppmeier; M. Dolores Real; Carolina Rausell
Background: Interaction with insect midgut receptors is required for Bacillus thuringienesis (Bt) toxicity. Results: RNAi knockdown of E-cadherin and sodium solute symporter (SSS) genes dramatically decreases Tribolium castaneum (Tc) larval susceptibility to Cry3Ba. A SSS fragment enhances Cry3Ba toxicity. Conclusion: E-cadherin and SSS but not aminopeptidase N are Cry3Ba receptors in Tc. Significance: For the first time, SSS was demonstrated as a Bt functional receptor. Understanding how Bacillus thuringiensis (Bt) toxins interact with proteins in the midgut of susceptible coleopteran insects is crucial to fully explain the molecular bases of Bt specificity and insecticidal action. In this work, aminopeptidase N (TcAPN-I), E-cadherin (TcCad1), and sodium solute symporter (TcSSS) have been identified by ligand blot as putative Cry3Ba toxin-binding proteins in Tribolium castaneum (Tc) larvae. RNA interference knockdown of TcCad1 or TcSSS proteins resulted in decreased susceptibility to Cry3Ba toxin, demonstrating the Cry toxin receptor functionality for these proteins. In contrast, TcAPN-I silencing had no effect on Cry3Ba larval toxicity, suggesting that this protein is not relevant in the Cry3Ba toxin mode of action in Tc. Remarkable features of TcSSS protein were the presence of cadherin repeats in its amino acid sequence and that a TcSSS peptide fragment containing a sequence homologous to a binding epitope found in Manduca sexta and Tenebrio molitor Bt cadherin functional receptors enhanced Cry3Ba toxicity. This is the first time that the involvement of a sodium solute symporter protein as a Bt functional receptor has been demonstrated. The role of this novel receptor in Bt toxicity against coleopteran insects together with the lack of receptor functionality of aminopeptidase N proteins might account for some of the differences in toxin specificity between Lepidoptera and Coleoptera insect orders.
Archives of Insect Biochemistry and Physiology | 1997
Carolina Rausell; Julia Llorca; M. Dolores Real
Variation of UDP-glucosyltransferase activity, during Drosophila melanogaster development, was analyzed. The endogenous metabolite xanthurenic acid and the xenobiotic compounds 1-naphthol and 2-naphthol were used as substrates. Developmentally regulated differences were observed for the three substrates, suggesting the presence of UDP-glucosyltransferase isoenzymes. This was further confirmed by FPLC chromatofocusing on a Mono P column: seven peaks of UDP-glucosyltransferase activity (pHs: > or = 6.3, 5.8, 5.5, 4.9, 4.5, 4.2, < or = 4.0) with either single or overlapping substrate specificity were detected. A single xanthurenic acid:UDP-glucosyltransferase activity (pl 5.8) was found throughout development. In contrast, a gradual increase in the number of 2-napthol:UDP-glucosyltransferase-isoenzymes (pl from 6.3 to 4.0) was observed during development, whereas no isoenzymes specific for 1-naphthol were resolved. Based on the distribution and substrate specificity of the eluted peaks in the three developmental stages analyzed, the presence of seven or possibly eight UDP-glucosyltransferase isoenzymes is proposed.
Developmental and Comparative Immunology | 2015
Estefanía Contreras; María Benito-Jardón; M. José López-Galiano; M. Dolores Real; Carolina Rausell
In Tribolium castaneum larvae we have demonstrated by RNA interference knockdown that the Bacillus thuringiensis Cry3Ba toxin receptors Cadherin-like and Sodium solute symporter proteins are also functional receptors of the less active Cry3Aa toxin. Differences in susceptibility to B. thuringiensis infection might not only rely on toxin-receptor interaction but also on host defense mechanisms. We compared the expression of the immune related genes encoding Apolipophorin-III and two antimicrobial peptides, Defensin3 and Defensin2 after B. thuringiensis challenge. All three genes were up-regulated following Cry3Ba spore-crystal intoxication whereas only Defensins gene expression was induced upon Cry3Aa spore-crystal treatment, evidencing a possible association between host immune response and larval susceptibility to B. thuringiensis. We assessed the antimicrobial activity spectra of T. castaneum defensins peptide fragments and found that a peptide fragment of Defensin3 was effective against the human microbial pathogens, Escherichia coli, Staphylococcus aureus and Candida albicans, being S. aureus the most susceptible one.
Pesticide Biochemistry and Physiology | 2013
Camila Ochoa-Campuzano; Amparo C. Martínez-Ramírez; Estefanía Contreras; Carolina Rausell; M. Dolores Real
Bacillus thuringienesis (Bt) Cry toxins constitute the most extensively used environmentally safe biopesticide and their mode of action relies on the interaction of the toxins with membrane proteins in the midgut of susceptible insects that mediate toxicity and insect specificity. Therefore, identification of Bt Cry toxin interacting proteins in the midgut of target insects and understanding their role in toxicity is of great interest to exploit their insecticidal action. Using ligand blot, we demonstrated that Bt Cry3Aa toxin bound to a 30kDa protein in Colorado potato beetle (CPB) larval midgut membrane, identified by sequence homology as prohibitin-1 protein. Prohibitins comprise a highly conserved family of proteins implicated in important cellular processes. We obtained the complete CPB prohibitin-1 DNA coding sequence of 828pb, in silico translated into a 276-amino acid protein. The analysis at the amino acid level showed that the protein contains a prohibitin-homology domain (Band7_prohibitin, cd03401) conserved among prohibitin proteins. A striking feature of the CPB identified prohibitin-1 is the predicted presence of cadherin elements, potential binding sites for Cry toxins described in other Bt susceptible insects. We also showed that CPB prohibitin-1 protein partitioned into both, detergent soluble and insoluble membrane fractions, as well as a prohibitin-2 homologous protein, previously reported to form functional complexes with prohibitin-1 in other organisms. Prohibitin complexes act as membrane scaffolds ensuring the recruitment of membrane proteases to facilitate substrate processing. Accordingly, sequestration of prohibitin-1 by an anti-prohibitin-1 antibody impaired the Cry3Aa toxin inhibition of the proteolytic cleavage of a fluorogenic synthetic substrate of an ADAM-like metalloprotease previously reported to proteolize this toxin. In this work, we also demonstrated that prohibitin-1 RNAi silencing in CPB larvae produced deleterious effects and together with a LD50 Cry3Aa toxin treatment resulted in a highly efficient short term response since 100% larval mortality was achieved just 5days after toxin challenge. Therefore, the combination of prohibitin RNAi and Cry toxin reveals as an effective strategy to improve crop protection.
International Journal of Molecular Sciences | 2013
Inmaculada García-Robles; Camila Ochoa-Campuzano; Emma Fernández-Crespo; Gemma Camañes; Amparo C. Martínez-Ramírez; Carmen González-Bosch; Pilar García-Agustín; Carolina Rausell; María Dolores Real
Interaction between insect herbivores and host plants can be modulated by endogenous and exogenous compounds present in the source of food and might be successfully exploited in Colorado potato beetle (CPB) pest management. Feeding tests with CPB larvae reared on three solanaceous plants (potato, eggplant and tomato) resulted in variable larval growth rates and differential susceptibility to Bacillus thuringiensis Cry3Aa toxin as a function of the host plant. An inverse correlation with toxicity was observed in Cry3Aa proteolytic patterns generated by CPB midgut brush-border membrane vesicles (BBMV) from Solanaceae-fed larvae, being the toxin most extensively proteolyzed on potato, followed by eggplant and tomato. We found that CPB cysteine proteases intestains may interact with Cry3Aa toxin and, in CPB BBMV from larvae fed all three Solanaceae, the toxin was able to compete for the hydrolysis of a papain substrate. In response to treatment with the JA-dependent plant inducer Hexanoic acid (Hx), we showed that eggplant reduced OPDA basal levels and both, potato and eggplant induced JA-Ile. CPB larvae feeding on Hx-induced plants exhibited enhanced Cry3Aa toxicity, which correlated with altered papain activity. Results indicated host-mediated effects on B. thuringiensis efficacy against CPB that can be enhanced in combination with Hx plant induction.