Carmen M. Benkovitz
Brookhaven National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carmen M. Benkovitz.
Journal of Geophysical Research | 1996
Carmen M. Benkovitz; M. Trevor Scholtz; Jozef Pacyna; L. Tarrason; Jane Dignon; Eva C. Voldner; Peter A. Spiro; Jennifer A. Logan; T. E. Graedel
Two sets of global inventories of anthropogenic emissions of both oxides of sulfur and oxides of nitrogen for circa 1985 have been produced under the umbrella of the Global Emissions Inventory Activity (GEIA) of the International Global Atmospheric Chemistry Program. The two sets of inventories have different temporal, sectoral, and vertical resolution. Both were compiled using the same data sets; default data sets of global emissions have been refined via the use of more detailed regional data sets. This article reports on the compilation of the annual, one-vertical-level inventories, called version 1A; the inventory files are available to the scientific community via anonymous file transform protocol (FTP). Existing global inventories and regional inventories have been updated and combined on a 1° × 1° longitude/latitude grid. The resulting global anthropogenic emissions are 65 Tg S yr−1 and 21 Tg N yr−1; qualitative uncertainty estimates have been assigned on a regional basis. Emissions of both SOx and NOx are strongly localized in the highly populated and industrialized areas of eastern North America and across Europe; other smaller regions of large emissions are associated with densely populated areas with developed industries or in connection with exploitation of fuels or mineral reserves. The molar ratio of nitrogen to sulfur emissions reflects the overall character of sources; its value is generally between 0.33 and 10 for industrialized and heavily populated areas but varies over a wide range for other areas. We suggest that those requiring sulfur or nitrogen emission inventories standardize on the GEIA inventories, which we believe are authoritative and which are freely available to all users by anonymous FTP.
Journal of Geophysical Research | 1999
William C. Keene; M. Aslam K. Khalil; David J. Erickson; A. McCulloch; T. E. Graedel; Jürgen M. Lobert; Michael L. Aucott; S. L. Gong; David B. Harper; Gary Kleiman; Pauline M. Midgley; Robert M. Moore; Christophe Seuzaret; W. T. Sturges; Carmen M. Benkovitz; Valentin Koropalov; L. A. Barrie; Yi-Fan Li
Emission inventories for major reactive tropospheric CI species (particulate CI, HC1, C1NO2, CH3CI, CHCI3, CH3CCI3, C2C14, C2HC13, CH2C12, and CHCIF2) were integrated across source types (terrestrial biogenic and oceanic emissions, sea-salt production and dechlorination, biomass burning, industrial emissions, fossil-fuel combustion, and incinera- tion). Composite emissions were compared with known sinks to assess budget closure; relative contributions of natural and anthropogenic sources were differentiated. Model cal- culations suggest that conventional acid-displacement reactions involving Sov)+O3, S(Iv)+ H202, and H2SO4 and HNO3 scavenging account for minor fractions of sea-salt dechlorina- tion globally. Other important chemical pathways involving sea-salt aerosol apparently pro- duce most volatile chlorine in the troposphere. The combined emissions of CH3CI from known sources account for about half of the modeled sink, suggesting fluxes from known sources were unde:estimated, the OH sink was overestimated, or significant unidentified sources exist. Anthropogenic activities (primarily biomass burning) contribute about half the net CH3CI emitted from known sources. Anthropogenic emissions account for only about 10% of the modeled CHCl3 sink. Although poorly constrained, significant fractions of tropo- spheric CH2C12 (25%), C2HC13 (10%), and C2C14 (5%) are emitted from the surface ocean; the combined contributions of C2C14 and C2HC13 from all natural sources may be substan- tially higher than the estimated oceanic flux.
Organic Geochemistry | 1982
Eugene T. Premuzic; Carmen M. Benkovitz; Jeffrey S. Gaffney; John J. Walsh
Existing data on the distribution of organic carbon and nitrogen in marine sediments have been analyzed in order to better understand the physical and chemical processes involved in this aspect of the global carbon cycle. Maps of the global distribution of organic carbon and nitrogen in the sediments of world oceans and seas are presented. Correlation analyses of the available information dealing with the distribution of marine sedimentary organic matter has revealed that in terms of bulk parameters (%COrg and %N Kjeldahl), there is an apparent accumulation of organic matter on the continental slope (water column depth 200–2000 m). Specific interactions between clays and organic matter, although indicated in laboratory experiments, have not been detected by these analyses.
Journal of Geophysical Research | 2000
M. C. Barth; Philip J. Rasch; Jeffrey T. Kiehl; Carmen M. Benkovitz; Stephen E. Schwartz
Sulfur chemistry has been incorporated in the National Center for Atmospheric Research Community Climate Model in an internally consistent manner with other parameterizations in the model. The model predicts mixing ratios of dimethylsulfide (DMS), SO 2 , SO 4 2 , H 2 O 2 . Processes that control the mixing ratio of these species include the emissions of DMS and SO 2 , transport of each species, gas- and aqueous-phase chemistry, wet deposition, and dry deposition of species. Modeled concentrations agree quite well with observations for DMS and H 2 O 2 , fairly well for SO 2 , and not as well for SO 4 2 The modeled SO 4 2- tends to underestimate observed SO 4 2- at the surface and overestimate observations in the upper troposphere. The SO 2 and SO 4 2- species were tagged according to the chemical production pathway and whether the sulfur was of anthropogenic or biogenic origin. Although aqueous-phase reactions in cloud accounted for 81% of the sulfate production rate, only ∼50-60% of the sulfate burden in the troposphere was derived from cloud chemistry. Because cloud chemistry is an important source of sulfate in the troposphere, the importance of H 2 O 2 concentrations and pH values was investigated. When prescribing H 2 O 2 concentrations to clear-sky values instead of predicting H 2 O 2 , the global-averaged, annual-averaged in-cloud production of sulfate increased. Setting the pH of the drops to 4.5 also increased the in-cloud production of sulfate. In both sensitivity simulations, the increased in-cloud production of sulfate decreased the burden of sulfate because less SO 2 was available for gas-phase conversion, which contributes more efficiently to the tropospheric sulfate burder than does aqueous-phase conversion.
Journal of Geophysical Research | 2000
Philip J. Rasch; M. C. Barth; Jeffrey T. Kiehl; Stephen E. Schwartz; Carmen M. Benkovitz
We examine the balance between processes that contribute to the global and regional distributions of sulfate aerosol in the Earths atmosphere using a set of simulations from the National Center for Atmospheric Research Community Climate Model, Version 3. The analysis suggests that the seasonal cycle of SO2 and SO42− are controlled by a complex interplay between transport, chemistry and deposition processes. The seasonal cycle of these species is not strongly controlled by temporal variations in emissions but by seasonal variations in volume of air processed by clouds, mass of liquid water serving as a site for aqueous chemistry, amount of oxidant available for the conversion from SO2 to SO42−, vertical transport processes, and deposition. A tagging of the sulfate by emission region (Europe, North America, Asia, and rest of world [ROW]), chemical pathway (gaseous versus in-cloud), and type of emissions (anthropogenic versus biogenic) is used to differentiate the balance of processes controlling the production and loading from this material. Significant differences exist in the destiny of SO2 molecules emitted from the several regions. An SO2 molecule emitted from the ROW source region has a much greater potential to form sulfate than one emitted from, for example, Europe. A greater fraction of the SO2 molecules is oxidized that originate from ROW compared with other areas, and once formed, the sulfate has a longer residence time (that is, it is not readily scavenged). The yield of sulfate from ROW sources of SO2 is a factor of 4 higher than that of Europe. A substantially higher fraction of the SO2 emitted over Europe is oxidized to sulfate through the ozone pathway compared to other regions. The analysis suggests that there are significant differences in the vertical distribution, and horizontal extent, of the propagation of sulfate emitted from the several source regions. Sulfate from Asian source regions reaches the farthest from its point of origin and makes a significant contribution to burdens in both hemispheres, primarily from plumes reaching out in the upper troposphere. Sulfate from other source regions tends to remain trapped in their hemisphere of origin.
Journal of Geophysical Research | 1999
A. McCulloch; Michael L. Aucott; Carmen M. Benkovitz; T. E. Graedel; Gary Kleiman; Pauline M. Midgley; Yi-Fan Li
Much if not all of the chlorine present in fossil fuels is released into the atmosphere as hydrogen chloride (HCl) and chloromethane (CH3Cl, methyl chloride). The chlorine content of oil-based fuels is so low that these sources can be neglected, but coal combustion provides significant releases. On the basis of national statistics for the quantity and quality of coal burned during 1990 in power and heat generation, industrial conversion and residential and commercial heating, coupled with information on the chlorine contents of coals, a global inventory of national HCl emissions from this source has been constructed. This was combined with an estimate of the national emissions of HCl from waste combustion (both large-scale incineration and trash burning) which was based on an estimate of the global quantity released from this source expressed per head of population. Account was taken of reduced emissions where flue gases were processed, for example to remove sulphur dioxide. The HCl emitted in 1990, comprising 4.6 ± 4.3 Tg Cl from fossil fuel and 2 ± 1.9 Tg Cl from waste burning, was spatially distributed using available information on point sources such as power generation utilities and population density by default. Also associated with these combustion sources are chloromethane emissions, calculated to be 0.075 ± 0.07 Tg as Cl (equivalent) from fossil fuels and 0.032 ± 0.023 Tg Cl (equivalent) from waste combustion. These were distributed spatially exactly as the HCl emissions, and a further 0.007 Tg Cl in chloromethane from industrial process activity was distributed by point sources.
Tellus B | 2001
L. A. Barrie; Y. Yi; W. R. Leaitch; Ulrike Lohmann; Prasad S. Kasibhatla; G. J. Roelofs; J. C. Wilson; F. McGovern; Carmen M. Benkovitz; M. A. Méliéres; Kathy S. Law; Joseph M. Prospero; Mark A. Kritz; D. Bergmann; C. Bridgeman; M. Chin; Jesper Christensen; Richard C. Easter; Johann Feichter; C. Land; A. Jeuken; Erik Kjellström; D. Koch; Philip J. Rasch
The comparison of large-scale sulphate aerosol models study (COSAM) compared the performance of atmospheric models with each other and observations. It involved: (i) design of a standard model experiment for the world wide web, (ii) 10 model simulations of the cycles of sulphur and 222Rn/210Pb conforming to the experimental design, (iii) assemblage of the best available observations of atmospheric SO=4, SO2 and MSA and (iv) a workshop in Halifax, Canada to analyze model performance and future model development needs. The analysis presented in this paper and two companion papers by Roelofs, and Lohmann and co-workers examines the variance between models and observations, discusses the sources of that variance and suggests ways to improve models. Variations between models in the export of SOx from Europe or North America are not sufficient to explain an order of magnitude variation in spatial distributions of SOx downwind in the northern hemisphere. On average, models predicted surface level seasonal mean SO=4 aerosol mixing ratios better (most within 20%) than SO2 mixing ratios (over-prediction by factors of 2 or more). Results suggest that vertical mixing from the planetary boundary layer into the free troposphere in source regions is a major source of uncertainty in predicting the global distribution of SO=4 aerosols in climate models today. For improvement, it is essential that globally coordinated research efforts continue to address emissions of all atmospheric species that affect the distribution and optical properties of ambient aerosols in models and that a global network of observations be established that will ultimately produce a world aerosol chemistry climatology.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Stephen E. Schwartz; Harshvardhan; Carmen M. Benkovitz
The Twomey effect of enhanced cloud droplet concentration, optical depth, and albedo caused by anthropogenic aerosols is thought to contribute substantially to radiative forcing of climate change over the industrial period. However, present model-based estimates of this indirect forcing are highly uncertain. Satellite-based measurements would provide global or near-global coverage of this effect, but previous efforts to identify and quantify enhancement of cloud albedo caused by anthropogenic aerosols in satellite observations have been limited, largely because of strong dependence of albedo on cloud liquid water path (LWP), which is inherently highly variable. Here we examine satellite-derived cloud radiative properties over two 1-week episodes for which a chemical transport and transformation model indicates substantial influx of sulfate aerosol from industrial regions of Europe or North America to remote areas of the North Atlantic. Despite absence of discernible dependence of optical depth or albedo on modeled sulfate loading, examination of the dependence of these quantities on LWP readily permits detection and quantification of increases correlated with sulfate loading, which are otherwise masked by variability of LWP, demonstrating brightening of clouds because of the Twomey effect on a synoptic scale. Median cloud-top spherical albedo was enhanced over these episodes, relative to the unperturbed base case for the same LWP distribution, by 0.02 to 0.15.
Geophysical Research Letters | 2000
D. L. Wright; Robert McGraw; Carmen M. Benkovitz; Stephen E. Schwartz
This letter describes the first application of the Quadrature Method of Moments (QMOM) [McGraw, 1997] in a 3-D chemical transformation and transport model. The QMOM simultaneously tracks an arbitrary (even) number of moments of a particle size distribution directly in space and time without the need for explicitly representing the distribution itself. The host 3-D model, the Global Chemistry Model driven by Observation-derived meteorological data (GChM-O), has been previously described [Benkovitz et al., 1994]. The present implementation evolves the six lowest-order radial moments for each of several externally-mixed aerosol populations. From these moments we report modeled geographic distributions of several aerosol properties, including a shortwave radiative forcing obtained using the Multiple Isomomental Distribution Aerosol Surrogate (MIDAS) technique [Wright, 2000]. These results demonstrate the capabilities of these moment-based techniques to simultaneously represent aerosol nucleation, condensation, coagulation, dry deposition, wet removal, cloud activation, and transport processes in a large scale model, and to yield aerosol optical properties and radiative influence from the modeled aerosol.
Geophysical Research Letters | 1993
David E. Hunter; Stephen E. Schwartz; Richard Wagener; Carmen M. Benkovitz
Tropospheric aerosols increase the shortwave reflectivity of the Earth-atmosphere system both by scattering light directly, in the absence of clouds, and by enhancing cloud reflectivity. The radiative forcing of climate exerted by anthropogenic sulfate aerosols, derived mainly from SO2 emitted from fossil fuel combustion, is opposite that due to anthropogenic greenhouse gases and is estimated to be of comparable average magnitude in Northern Hemisphere midlatitudes. However, persuasive evidence of climate response to this forcing has thus far been lacking. Here we examine patterns of seasonal and latitudinal variations in temperature anomaly trend for evidence of such a response. Pronounced minima in the rate of temperature increase in summer months in Northern Hemisphere midlatitudes are consistent with the latitudinal distribution of anthropogenic sulfate and changes in the rate of SO2 emissions over the industrial era.