Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey T. Kiehl is active.

Publication


Featured researches published by Jeffrey T. Kiehl.


Journal of Climate | 2006

The Community Climate System Model version 3 (CCSM3)

William D. Collins; Cecilia M. Bitz; Maurice L. Blackmon; Gordon B. Bonan; Christopher S. Bretherton; James A. Carton; Ping Chang; Scott C. Doney; James J. Hack; Thomas B. Henderson; Jeffrey T. Kiehl; William G. Large; Daniel S. McKenna; Benjamin D. Santer; Richard D. Smith

Abstract The Community Climate System Model version 3 (CCSM3) has recently been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale dynamics, variability, and climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for the atmosphere and land and a grid with approximately 1° resolution for the ocean and sea ice. The new system incorporates several significant improvements in the physical parameterizations. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol ...


Journal of Geophysical Research | 2001

Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze

V. Ramanathan; Paul J. Crutzen; J. Lelieveld; A. P. Mitra; Dietrich Althausen; James R. Anderson; Meinrat O. Andreae; Will Cantrell; Glen R. Cass; Chul Eddy Chung; Antony D. Clarke; James A. Coakley; W. D. Collins; William C. Conant; F. Dulac; Jost Heintzenberg; Andrew J. Heymsfield; Brent N. Holben; S. Howell; James G. Hudson; A. Jayaraman; Jeffrey T. Kiehl; T. N. Krishnamurti; Dan Lubin; Greg M. McFarquhar; T. Novakov; John A. Ogren; I. A. Podgorny; Kimberly A. Prather; Kory J. Priestley

Every year, from December to April, anthropogenic haze spreads over most of the North Indian Ocean, and South and Southeast Asia. The Indian Ocean Experiment (INDOEX) documented this Indo-Asian haze at scales ranging from individual particles to its contribution to the regional climate forcing. This study integrates the multiplatform observations (satellites, aircraft, ships, surface stations, and balloons) with one- and four-dimensional models to derive the regional aerosol forcing resulting from the direct, the semidirect and the two indirect effects. The haze particles consisted of several inorganic and carbonaceous species, including absorbing black carbon clusters, fly ash, and mineral dust. The most striking result was the large loading of aerosols over most of the South Asian region and the North Indian Ocean. The January to March 1999 visible optical depths were about 0.5 over most of the continent and reached values as large as 0.2 over the equatorial Indian ocean due to long-range transport. The aerosol layer extended as high as 3 km. Black carbon contributed about 14% to the fine particle mass and 11% to the visible optical depth. The single-scattering albedo estimated by several independent methods was consistently around 0.9 both inland and over the open ocean. Anthropogenic sources contributed as much as 80% (±10%) to the aerosol loading and the optical depth. The in situ data, which clearly support the existence of the first indirect effect (increased aerosol concentration producing more cloud drops with smaller effective radii), are used to develop a composite indirect effect scheme. The Indo-Asian aerosols impact the radiative forcing through a complex set of heating (positive forcing) and cooling (negative forcing) processes. Clouds and black carbon emerge as the major players. The dominant factor, however, is the large negative forcing (-20±4 W m^(−2)) at the surface and the comparably large atmospheric heating. Regionally, the absorbing haze decreased the surface solar radiation by an amount comparable to 50% of the total ocean heat flux and nearly doubled the lower tropospheric solar heating. We demonstrate with a general circulation model how this additional heating significantly perturbs the tropical rainfall patterns and the hydrological cycle with implications to global climate.


Bulletin of the American Meteorological Society | 1997

Earth's Annual Global Mean Energy Budget

Jeffrey T. Kiehl; Kevin E. Trenberth

Abstract The purpose of this paper is to put forward a new estimate, in the context of previous assessments, of the annual global mean energy budget. A description is provided of the source of each component to this budget. The top-of-atmosphere shortwave and longwave flux of energy is constrained by satellite observations. Partitioning of the radiative energy throughout the atmosphere is achieved through the use of detailed radiation models for both the longwave and shortwave spectral regions. Spectral features of shortwave and longwave fluxes at both the top and surface of the earths system are presented. The longwave radiative forcing of the climate system for both clear (125 W m-2) and cloudy (155 W m-2) conditions are discussed. The authors find that for the clear sky case the contribution due to water vapor to the total longwave radiative forcing is 75 W m-2, while for carbon dioxide it is 32 W m-2. Clouds alter these values, and the effects of clouds on both the longwave and shortwave budget are a...


Bulletin of the American Meteorological Society | 2009

Earth's Global Energy Budget

Kevin E. Trenberth; John T. Fasullo; Jeffrey T. Kiehl

An update is provided on the Earths global annual mean energy budget in the light of new observations and analyses. In 1997, Kiehl and Trenberth provided a review of past estimates and performed a number of radiative computations to better establish the role of clouds and various greenhouse gases in the overall radiative energy flows, with top-of-atmosphere (TOA) values constrained by Earth Radiation Budget Experiment values from 1985 to 1989, when the TOA values were approximately in balance. The Clouds and the Earths Radiant Energy System (CERES) measurements from March 2000 to May 2004 are used at TOA but adjusted to an estimated imbalance from the enhanced greenhouse effect of 0.9 W m−2. Revised estimates of surface turbulent fluxes are made based on various sources. The partitioning of solar radiation in the atmosphere is based in part on the International Satellite Cloud Climatology Project (ISCCP) FD computations that utilize the global ISCCP cloud data every 3 h, and also accounts for increased ...


Science | 1993

The relative roles of sulfate aerosols and greenhouse gases in climate forcing

Jeffrey T. Kiehl; B. P. Briegleb

Calculations of the effects of both natural and anthropogenic tropospheric sulfate aerosols indicate that the aerosol climate forcing is sufficiently large in a number of regions of the Northern Hemisphere to reduce significantly the positive forcing from increased greenhouse gases. Summer sulfate aerosol forcing in the Northern Hemisphere completely offsets the greenhouse forcing over the eastern United States and central Europe. Anthropogenic sulfate aerosols contribute a globally averaged annual forcing of –0.3 watt per square meter as compared with +2.1 watts per square meter for greenhouse gases. Sources of the difference in magnitude with the previous estimate of Charlson et al. are discussed.


Science | 2006

Paleoclimatic Evidence for Future Ice-Sheet Instability and Rapid Sea-Level Rise

Jonathan T. Overpeck; Bette L. Otto-Bliesner; Gifford H. Miller; Daniel R. Muhs; Richard B. Alley; Jeffrey T. Kiehl

Sea-level rise from melting of polar ice sheets is one of the largest potential threats of future climate change. Polar warming by the year 2100 may reach levels similar to those of 130,000 to 127,000 years ago that were associated with sea levels several meters above modern levels; both the Greenland Ice Sheet and portions of the Antarctic Ice Sheet may be vulnerable. The record of past ice-sheet melting indicates that the rate of future melting and related sea-level rise could be faster than widely thought.


Journal of Climate | 2008

Quantifying Climate Feedbacks Using Radiative Kernels

Brian J. Soden; Isaac M. Held; Robert C. Colman; Karen M. Shell; Jeffrey T. Kiehl; Christine A. Shields

Abstract The extent to which the climate will change due to an external forcing depends largely on radiative feedbacks, which act to amplify or damp the surface temperature response. There are a variety of issues that complicate the analysis of radiative feedbacks in global climate models, resulting in some confusion regarding their strengths and distributions. In this paper, the authors present a method for quantifying climate feedbacks based on “radiative kernels” that describe the differential response of the top-of-atmosphere radiative fluxes to incremental changes in the feedback variables. The use of radiative kernels enables one to decompose the feedback into one factor that depends on the radiative transfer algorithm and the unperturbed climate state and a second factor that arises from the climate response of the feedback variables. Such decomposition facilitates an understanding of the spatial characteristics of the feedbacks and the causes of intermodel differences. This technique provides a si...


Science | 1995

Absorption of Solar Radiation by Clouds: Observations Versus Models

Robert D. Cess; Minghua Zhang; Patrick Minnis; L. Corsetti; Ellsworth G. Dutton; Bruce Forgan; D. P. Garber; W. L. Gates; James J. Hack; Edwin F. Harrison; X. Jing; Jeffrey T. Kiehl; C. N. Long; J.-J. Morcrette; G. L. Potter; V. Ramanathan; B. Subasilar; C. H. Whitlock; David F. Young; Y. Zhou

There has been a long history of unexplained anomalous absorption of solar radiation by clouds. Collocated satellite and surface measurements of solar radiation at five geographically diverse locations showed significant solar absorption by clouds, resulting in about 25 watts per square meter more global-mean absorption by the cloudy atmosphere than predicted by theoretical models. It has often been suggested that tropospheric aerosols could increase cloud absorption. But these aerosols are temporally and spatially heterogeneous, whereas the observed cloud absorption is remarkably invariant with respect to season and location. Although its physical cause is unknown, enhanced cloud absorption substantially alters our understanding of the atmospheres energy budget.


Science | 1995

Warm pool heat budget and shortwave cloud forcing: A missing physics?

V. Ramanathan; B. Subasilar; Guang J. Zhang; William C. Conant; Robert D. Cess; Jeffrey T. Kiehl; Hartmut Grassl; L. Shi

Ship observations and ocean models indicate that heat export from the mixed layer of the western Pacific warm pool is small (<20 watts per square meter). This value was used to deduce the effect of clouds on the net solar radiation at the sea surface. The inferred magnitude of this shortwave cloud forcing was large (≈ – 100 watts per square meter) and exceeded its observed value at the top of the atmosphere by a factor of about 1.5. This result implies that clouds (at least over the warm pool) reduce net solar radiation at the sea surface not only by reflecting a significant amount back to space, but also by trapping a large amount in the cloudy atmosphere, an inference that is at variance with most model results. The excess cloud absorption, if confirmed, has many climatic implications, including a significant reduction in the required tropics to extrattropics heat transport in the oceans.


Geology | 2005

Climate simulation of the latest Permian: Implications for mass extinction

Jeffrey T. Kiehl; Christine A. Shields

Life at the Permian-Triassic boundary (ca. 251 Ma) underwent the largest disruption in Earths history. Paleoclimatic data indicate that Earth was significantly warmer than present and that much of the ocean was anoxic or euxinic for an extended period of time. We present results from the first fully coupled comprehensive climate model using paleo- geography for this time period. The coupled climate system model simulates warm high- latitude surface air temperatures related to elevated carbon dioxide levels and a stagnate global ocean circulation in concert with paleodata indicating low oxygen levels at ocean depth. This is the first climate simulation that captures these observed features of this time period.

Collaboration


Dive into the Jeffrey T. Kiehl's collaboration.

Top Co-Authors

Avatar

Christine A. Shields

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

James J. Hack

University Corporation for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

V. Ramanathan

University of California

View shared research outputs
Top Co-Authors

Avatar

William D. Collins

University Corporation for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Robert D. Cess

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Jean-Francois Lamarque

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Philip J. Rasch

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge