Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carmen Saltó is active.

Publication


Featured researches published by Carmen Saltó.


The EMBO Journal | 1998

Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor alpha 1

Lilian Wikström; Catarina Johansson; Carmen Saltó; Carrolee Barlow; Angel Campos Barros; Frank Baas; Douglas Forrest; Peter Thorén; Björn Vennström

Thyroid hormone, acting through several nuclear hormone receptors, plays important roles in thermogenesis, lipogenesis and maturation of the neonatal brain. The receptor specificity for mediating these effects is largely unknown, and to determine this we developed mice lacking the thyroid hormone receptor TRα1. The mice have an average heart rate 20% lower than that of control animals, both under normal conditions and after thyroid hormone stimulation. Electrocardiograms show that the mice also have prolonged QRS‐ and QTend‐durations. The mice have a body temperature 0.5°C lower than normal and exhibit a mild hypothyroidism, whereas their overall behavior and reproduction are normal. The results identify specific and important roles for TRα1 in regulation of tightly controlled physiological functions, such as cardiac pacemaking, ventricular repolarisation and control of body temperature.


Journal of Clinical Investigation | 2008

Wnt5a-treated midbrain neural stem cells improve dopamine cell replacement therapy in parkinsonian mice.

Clare L. Parish; Gonçalo Castelo-Branco; Nina Rawal; Jan Tønnesen; Andreas T. Sørensen; Carmen Saltó; Merab Kokaia; Olle Lindvall; Ernest Arenas

Dopamine (DA) cell replacement therapy in Parkinson disease (PD) can be achieved using human fetal mesencephalic tissue; however, limited tissue availability has hindered further developments. Embryonic stem cells provide a promising alternative, but poor survival and risk of teratoma formation have prevented their clinical application. We present here a method for generating large numbers of DA neurons based on expanding and differentiating ventral midbrain (VM) neural stem cells/progenitors in the presence of key signals necessary for VM DA neuron development. Mouse VM neurospheres (VMNs) expanded with FGF2, differentiated with sonic hedgehog and FGF8, and transfected with Wnt5a (VMN-Wnt5a) generated 10-fold more DA neurons than did conventional FGF2-treated VMNs. VMN-Wnt5a cells exhibited the transcriptional and biochemical profiles and intrinsic electrophysiological properties of midbrain DA cells. Transplantation of these cells into parkinsonian mice resulted in significant cellular and functional recovery. Importantly, no tumors were detected and only a few transplanted grafts contained sporadic nestin-expressing progenitors. Our findings show that Wnt5a improves the differentiation and functional integration of stem cell-derived DA neurons in vivo and define Wnt5a-treated neural stem cells as an efficient and safe source of DA neurons for cell replacement therapy in PD.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Communication via gap junctions underlies early functional and beneficial interactions between grafted neural stem cells and the host

Johan Jäderstad; Linda Maria Jäderstad; Jianxue Li; Satyan Chintawar; Carmen Saltó; Massimo Pandolfo; Vaclav Ourednik; Yang D. Teng; Richard L. Sidman; Ernest Arenas; Evan Y. Snyder; Eric Herlenius

How grafted neural stem cells (NSCs) and their progeny integrate into recipient brain tissue and functionally interact with host cells is as yet unanswered. We report that, in organotypic slice cultures analyzed by ratiometric time-lapse calcium imaging, current-clamp recordings, and dye-coupling methods, an early and essential way in which grafted murine or human NSCs integrate functionally into host neural circuitry and affect host cells is via gap-junctional coupling, even before electrophysiologically mature neuronal differentiation. The gap junctions, which are established rapidly, permit exogenous NSCs to influence directly host network activity, including synchronized calcium transients with host cells in fluctuating networks. The exogenous NSCs also protect host neurons from death and reduce such signs of secondary injury as reactive astrogliosis. To determine whether gap junctions between NSCs and host cells may also mediate neuroprotection in vivo, we examined NSC transplantation in two murine models characterized by degeneration of the same cell type (Purkinje neurons) from different etiologies, namely, the nervous and SCA1 mutants. In both, gap junctions (containing connexin 43) formed between NSCs and host cells at risk, and were associated with rescue of neurons and behavior (when implantation was performed before overt neuron loss). Both in vitro and in vivo beneficial NSC effects were abrogated when gap junction formation or function was suppressed by pharmacologic and/or RNA-inhibition strategies, supporting the pivotal mediation by gap-junctional coupling of some modulatory, homeostatic, and protective actions on host systems as well as establishing a template for the subsequent development of electrochemical synaptic intercellular communication.


Cell | 2016

Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells

Gioele La Manno; Daniel Gyllborg; Simone Codeluppi; Kaneyasu Nishimura; Carmen Saltó; Amit Zeisel; Lars E. Borm; Simon Stott; Enrique M. Toledo; J. Carlos Villaescusa; Peter Lönnerberg; Jesper Ryge; Roger A. Barker; Ernest Arenas; Sten Linnarsson

Summary Understanding human embryonic ventral midbrain is of major interest for Parkinson’s disease. However, the cell types, their gene expression dynamics, and their relationship to commonly used rodent models remain to be defined. We performed single-cell RNA sequencing to examine ventral midbrain development in human and mouse. We found 25 molecularly defined human cell types, including five subtypes of radial glia-like cells and four progenitors. In the mouse, two mature fetal dopaminergic neuron subtypes diversified into five adult classes during postnatal development. Cell types and gene expression were generally conserved across species, but with clear differences in cell proliferation, developmental timing, and dopaminergic neuron development. Additionally, we developed a method to quantitatively assess the fidelity of dopaminergic neurons derived from human pluripotent stem cells, at a single-cell level. Thus, our study provides insight into the molecular programs controlling human midbrain development and provides a foundation for the development of cell replacement therapies.


Langmuir | 2008

Control of neural stem cell adhesion and density by an electronic polymer surface switch.

Carmen Saltó; Emilien Saindon; Maria H. Bolin; Anna Kanciurzewska; Mats Fahlman; Edwin Jager; Pentti Tengvall; Ernest Arenas; Magnus Berggren

Adhesion is an essential parameter for stem cells. It regulates the overall cell density along the carrying surface, which further dictates the differentiation scheme of stem cells toward a more matured and specified population as well as tissue. Electronic control of the seeding density of neural stem cells (c17.2) is here reported. Thin electrode films of poly(3,4-ethylenedioxythiophene) (PEDOT):Tosylate were manufactured along the floor of cell growth dishes. As the oxidation state of the conjugated polymer electrodes was controlled, the seeding density could be varied by a factor of 2. Along the oxidized PEDOT:Tosylate-electrodes, a relatively lower density of, and less tightly bonded, human serum albumin (HSA) was observed as compared to reduced electrodes. We found that this favors adhesion of the specific stem cells studied. Surface analysis experiments, such as photoelectron spectroscopy, and water contact angle measurements, were carried out to investigate the mechanisms responsible for the electronic control of the seeding density of the c17.2 neural stem cells. Further, our findings may provide an opening for electronic control of stem cell differentiation.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Wnt5a cooperates with canonical Wnts to generate midbrain dopaminergic neurons in vivo and in stem cells

Emma R. Andersson; Carmen Saltó; J. Carlos Villaescusa; Lukas Cajanek; Shanzheng Yang; Lenka Bryjova; Irina I. Nagy; Seppo Vainio; Carmen Ramirez; Vitezslav Bryja; Ernest Arenas

Wnts are a family of secreted proteins that regulate multiple steps of neural development and stem cell differentiation. Two of them, Wnt1 and Wnt5a, activate distinct branches of Wnt signaling and individually regulate different aspects of midbrain dopaminergic (DA) neuron development. However, several of their functions and interactions remain to be elucidated. Here, we report that loss of Wnt1 results in loss of Lmx1a and Ngn2 expression, as well as agenesis of DA neurons in the midbrain floor plate. Remarkably, a few ectopic DA neurons still emerge in the basal plate of Wnt1−/− mice, where Lmx1a is ectopically expressed. These results indicate that Wnt1 orchestrates DA specification and neurogenesis in vivo. Analysis of Wnt1−/−;Wnt5a−/− mice revealed a greater loss of Nurr1+ cells and DA neurons than in single mutants, indicating that Wnt1 and Wnt5a interact genetically and cooperate to promote midbrain DA neuron development in vivo. Our results unravel a functional interaction between Wnt1 and Wnt5a resulting in enhanced DA neurogenesis. Taking advantage of these findings, we have developed an application of Wnts to improve the generation of midbrain DA neurons from neural and embryonic stem cells. We thus show that coordinated Wnt actions promote DA neuron development in vivo and in stem cells and suggest that coordinated Wnt administration can be used to improve DA differentiation of stem cells and the development of stem cell-based therapies for Parkinson’s disease.


Nature Chemical Biology | 2013

Brain endogenous liver X receptor ligands selectively promote midbrain neurogenesis

Spyridon Theofilopoulos; Yuqin Wang; Satish Srinivas Kitambi; Paola Sacchetti; Kyle M. Sousa; Karl Bodin; Jayne Kirk; Carmen Saltó; Magnus Gustafsson; Enrique M. Toledo; Kersti Karu; Jan Åke Gustafsson; Knut R. Steffensen; Patrik Ernfors; Jan Sjövall; William J. Griffiths; Ernest Arenas

Liver X receptors (Lxrα and Lxrβ) are ligand-dependent nuclear receptors critical for ventral midbrain neurogenesis in vivo. However, no endogenous midbrain Lxr ligand has so far been identified. Here we used LC/MS and functional assays to identify cholic acid as a new Lxr ligand. Moreover, 24(S),25-epoxycholesterol (24,25-EC) was found to be the most potent and abundant Lxr ligand in the developing mouse midbrain. Both Lxr ligands promoted neural development in an Lxr-dependent manner in zebrafish in vivo. Notably, each ligand selectively regulated the development of distinct midbrain neuronal populations. Whereas cholic acid increased survival and neurogenesis of Brn3a-positive red nucleus neurons, 24,25-EC promoted dopaminergic neurogenesis. These results identify an entirely new class of highly selective and cell type-specific regulators of neurogenesis and neuronal survival. Moreover, 24,25-EC promoted dopaminergic differentiation of embryonic stem cells, suggesting that Lxr ligands may thus contribute to the development of cell replacement and regenerative therapies for Parkinsons disease.


Biointerphases | 2007

Peptide-presenting two-dimensional protein matrix on supported lipid bilayers: An efficient platform for cell adhesion

Rémi Bérat; Murielle Rémy-Zolghadry; Céline Gounou; Claude Manigand; S. M. Tan; Carmen Saltó; Ernest Arenas; Laurence Bordenave; Alain Brisson

Understanding and controlling cell adhesion to biomaterials and synthetic materials are important issues in basic research and applied sciences. Supported lipid bilayers (SLBs) functionalized with cell adhesion peptides linked to lipid molecules are popular platforms of cell adhesion. In this paper, an alternative approach of peptide presentation is presented in which peptides are stereo-selectively linked to proteins self-assembling in a rigid two-dimensional (2D) matrix on SLBs. Annexin-A5 (Anx5) was used as prototype protein for its known properties of forming stable and rigid 2D matrices on lipid surfaces. Two types of Anx5-peptide complexes, containing either a RGD or an IKVAV sequence, were synthesized. The authors show that both Anx5-peptide complexes present the same properties of binding and 2D organization on lipid surfaces as Anx5, when investigated by quartz crystal microbalance with dissipation monitoring, atomic force microscopy, and transmission electron microscopy techniques. Anx5-RGD and Anx5-IKVAV 2D matrices were found to promote specific adhesion of human saphenous vein endothelial cells and mouse embryonic stem cells, respectively. The influence of the surface density of exposed peptides on cell adhesion was investigated, showing that cells attach to Anx5-peptide matrices when the average distance between peptides is smaller than about 60 nm. This cell adhesion platform provides control of the orientation and density of cell ligands, opening interesting possibilities for future applications.


Scientific Reports | 2016

Dopamine Receptor Antagonists Enhance Proliferation and Neurogenesis of Midbrain Lmx1a-expressing Progenitors

Eva Hedlund; Laure Belnoue; Spyridon Theofilopoulos; Carmen Saltó; Chris R. Bye; Clare L. Parish; Qiaolin Deng; Banafsheh Kadkhodaei; Johan Ericson; Ernest Arenas; Thomas Perlmann; András Simon

Degeneration of dopamine neurons in the midbrain causes symptoms of the movement disorder, Parkinson disease. Dopamine neurons are generated from proliferating progenitor cells localized in the embryonic ventral midbrain. However, it remains unclear for how long cells with dopamine progenitor character are retained and if there is any potential for reactivation of such cells after cessation of normal dopamine neurogenesis. We show here that cells expressing Lmx1a and other progenitor markers remain in the midbrain aqueductal zone beyond the major dopamine neurogenic period. These cells express dopamine receptors, are located in regions heavily innervated by midbrain dopamine fibres and their proliferation can be stimulated by antagonizing dopamine receptors, ultimately leading to increased neurogenesis in vivo. Furthermore, treatment with dopamine receptor antagonists enhances neurogenesis in vitro, both from embryonic midbrain progenitors as well as from embryonic stem cells. Altogether our results indicate a potential for reactivation of resident midbrain cells with dopamine progenitor potential beyond the normal period of dopamine neurogenesis.


Science Signaling | 2017

Niche-derived laminin-511 promotes midbrain dopaminergic neuron survival and differentiation through YAP

Dawei Zhang; Shanzheng Yang; Enrique M. Toledo; Daniel Gyllborg; Carmen Saltó; J. Carlos Villaescusa; Ernest Arenas

Activation of the transcription factor YAP by an extracellular laminin promotes the differentiation and survival of dopaminergic neurons. YAP supports dopaminergic neurons Parkinson’s disease (PD) is a neurodegenerative disorder marked by progressive loss of dopaminergic neurons and motor control. Various factors promote or inhibit neuronal survival. Zhang et al. found that a prosurvival signal was mediated by the transcription cofactor YAP. YAP was activated in midbrain dopaminergic neurons in culture and in mice through an interaction between an integrin and the extracellular matrix protein laminin-511. YAP then transcriptionally activated dopaminergic neuron differentiation factors and a microRNA that decreased the synthesis of the apoptotic protein PTEN. The findings uncover a new role for YAP in neurons and a pathway that might be explored for the purpose of promoting dopaminergic neuron survival in PD patients. Parkinson’s disease (PD) is a neurodegenerative disorder in which the loss of dopaminergic neurons in the midbrain (mDA neurons) causes progressive loss of motor control and function. Using embryonic and mDA neurons, midbrain tissue from mice, and differentiated human neural stem cells, we investigated the mechanisms controlling the survival of mDA neurons. We found that the extracellular matrix protein laminin-511 (LM511) promoted the survival and differentiation of mDA neurons. LM511 bound to integrin α3β1 and activated the transcriptional cofactor YAP. LM511-YAP signaling enhanced cell survival by inducing the expression of the microRNA miR-130a, which suppressed the synthesis of the cell death–associated protein PTEN. In addition, LM511-YAP signaling increased the expression of transcription factors critical for mDA identity, such as LMX1A and PITX3, and prevented the loss of mDA neurons in response to oxidative stress, a finding that warrants further investigation to assess therapeutic potential for PD patients. We propose that by enhancing LM511-YAP signaling, it may be possible to prevent mDA neuron degeneration in PD or enhance the survival of mDA neurons in cell replacement therapies.

Collaboration


Dive into the Carmen Saltó's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas Forrest

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge