Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enrique M. Toledo is active.

Publication


Featured researches published by Enrique M. Toledo.


Molecular Psychiatry | 2010

Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1ΔE9 mouse model of Alzheimer's disease

Enrique M. Toledo; Nibaldo C. Inestrosa

Alzheimers disease (AD) is a neurodegenerative disorder characterized by a progressive deterioration of cognitive abilities, accumulation of the amyloid-β-peptide (Aβ) and synaptic alterations. Treatment with lithium has been shown to provide neuroprotection against several insults, including protection against Aβ neurotoxicity in vitro. Rosiglitazone, a peroxisome proliferator activated receptor-γ agonist, has been shown to attenuate Aβ-peptide neurotoxic effects, including the inflammatory response of microglia and astrocytes. Both types of drugs activate Wnt signaling, a pathway that has been shown to be related to AD. In this study, a double transgenic mouse model, which coexpresses APPswe and the exon 9 deletion of the presenilin 1 (PSEN1) gene, was used to examine, in vivo, the effect of lithium and rosiglitazone on Aβ neurotoxicity. Mice were tested for spatial memory, and their brain samples were used for histochemical and biochemical analysis. In this study, we report that both drugs significantly reduced (1) spatial memory impairment induced by amyloid burden; (2) Aβ aggregates and Aβ oligomers; and (3) astrocytic and microglia activation. They also prevented changes in presynaptic and postsynaptic marker proteins. Finally, both drugs activate Wnt signaling shown by the increase in β-catenin and by the inhibition of the glycogen synthase kinase-3β. We conclude that lithium and rosiglitazone, possibly by the activation of the Wnt signaling pathway, reduce various AD neuropathological markers and may be considered as potential therapeutic agents against the disease.


Progress in Neurobiology | 2008

Wnt signaling in neuroprotection and stem cell differentiation.

Enrique M. Toledo; Marcela Colombres; Nibaldo C. Inestrosa

In the past several years, we postulated that the loss of Wnt signaling was implicated in the pathology of Alzheimers disease (AD). Since then, our lab and other groups have confirmed the involvement of the Wnt signaling in some aspects of AD. So far, we have demonstrated that activation of Wnt signaling protects neurons against neurotoxic injuries, including both amyloid-beta (Abeta) fibrils and Abeta oligomers by using either lithium, an inhibitor of the glycogen-synthase-kinase-3beta (GSK-3beta), or different Wnt ligands. Also, we have found that several molecules which activate well known neurotransmitter systems and other signaling system, are able by crosstalk to activate Wnt/beta-catenin signaling in order to protect neurons against both Abeta fibrils or Abeta oligomers. In particular, the activation of non-canonical Wnt signaling was able to protect postsynaptic regions and dendritic spines against Abeta oligomers. Furthermore Wnt signaling ligands also affect stem cells, and they are also involved in cell fate decision during neurogenesis and embryonic development as well as in adult stem cells differentiation in the nervous system. The Wnt signaling plays a key role modulating their cell differentiation or proliferation states. Altogether, these findings in both stem cell biology and neuroprotection, may introduce new approaches in the treatment of neurodegenerative diseases, including drug screening and therapies against neurodegenerative diseases which activates the Wnt signaling pathway.


Molecular Neurodegeneration | 2008

The role of Wnt signaling in neuronal dysfunction in Alzheimer's Disease

Nibaldo C. Inestrosa; Enrique M. Toledo

Recent evidence supports a neuroprotective role for Wnt signaling in neurodegenerative disorders such as Alzheimers Disease (AD). In fact, a relationship between amyloid-β-peptide (Aβ)-induced neurotoxicity and a decrease in the cytoplasmic levels of β-catenin has been observed. Apparently Aβ binds to the extracellular cysteine-rich domain of the Frizzled receptor (Fz) inhibiting Wnt/β-catenin signaling. Cross-talk with other signaling cascades that regulate Wnt/β-catenin signaling, including the activation of M1 muscarinic receptor and PKC, the use of Ibuprofen-ChE bi-functional compounds, PPAR α, γ agonists, nicotine and some antioxidants, results in neuroprotection against Aβ. These studies indicate that a sustained loss of Wnt signaling function may be involved in the Aβ-dependent neurodegeneration observed in Alzheimers brain. In conclusion the activation of the Wnt signaling pathway could be proposed as a therapeutic target for the treatment of AD.


Brain | 2008

STI571 prevents apoptosis, tau phosphorylation and behavioural impairments induced by Alzheimer's β-amyloid deposits

Gonzalo I. Cancino; Enrique M. Toledo; Nancy R. Leal; Diego E. Hernández; L. Fernanda Yévenes; Nibaldo C. Inestrosa; Alejandra R. Alvarez

There is evidence that amyloid beta-protein (Abeta) deposits or Abeta intermediates trigger pathogenic factors in Alzheimers disease patients. We have previously reported that c-Abl kinase activation involved in cell signalling regulates the neuronal death response to Abeta fibrils (Abeta(f)). In the present study we investigated the therapeutic potential of the selective c-Abl inhibitor STI571 on both the intrahippocampal injection of Abeta(f) and APPsw/PSEN1DeltaE9 transgenic mice Alzheimers disease models. Injection of Abeta(f) induced an increase in the numbers of p73 and c-Abl immunoreactive cells in the hippocampal area near to the lesion. Chronic intraperitoneal administration of STI571 reduced the rat behavioural deficit induced by Abeta(f), as well as apoptosis and tau phosphorylation. Our in vitro studies suggest that inhibition of the c-Abl/p73 signalling pathway is the mechanism underlying of the effects of STI571 on Abeta-induced apoptosis for the following reasons: (i) Abeta(f) induces p73 phosphorylation, the TAp73 isoform levels increase so as to enhance its proapoptotic function, and all these effects where reduced by STI571; (ii) c-Abl kinase activity is required for neuronal apoptosis and (iii) STI571 prevents the Abeta-induced increase in the expression of apoptotic genes. Furthermore, in the Abeta-injected area there was a huge increase in phosphorylated p73 and a larger number of TAp73-positive cells, with these changes being prevented by STI571 coinjection. Moreover, the intraperitoneal administration of STI571 rescued the cognitive decline in APPsw/PSEN1DeltaE9 mice, p73 phosphorylation, tau phosphorylation and caspase-3 activation in neurons around Abeta deposits. Besides, we observed a decrease in the number and size of Abeta deposits in the APPsw/PSEN1DeltaE9-STI571-treated mice. These results are consistent with the role of the c-Abl/p73 signalling pathway in Abeta neurodegeneration, and suggest that STI571-like compounds would be effective in therapeutic treatments of Alzheimer disease.


Cell | 2016

Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells

Gioele La Manno; Daniel Gyllborg; Simone Codeluppi; Kaneyasu Nishimura; Carmen Saltó; Amit Zeisel; Lars E. Borm; Simon Stott; Enrique M. Toledo; J. Carlos Villaescusa; Peter Lönnerberg; Jesper Ryge; Roger A. Barker; Ernest Arenas; Sten Linnarsson

Summary Understanding human embryonic ventral midbrain is of major interest for Parkinson’s disease. However, the cell types, their gene expression dynamics, and their relationship to commonly used rodent models remain to be defined. We performed single-cell RNA sequencing to examine ventral midbrain development in human and mouse. We found 25 molecularly defined human cell types, including five subtypes of radial glia-like cells and four progenitors. In the mouse, two mature fetal dopaminergic neuron subtypes diversified into five adult classes during postnatal development. Cell types and gene expression were generally conserved across species, but with clear differences in cell proliferation, developmental timing, and dopaminergic neuron development. Additionally, we developed a method to quantitatively assess the fidelity of dopaminergic neurons derived from human pluripotent stem cells, at a single-cell level. Thus, our study provides insight into the molecular programs controlling human midbrain development and provides a foundation for the development of cell replacement therapies.


The Journal of Neuroscience | 2007

Wnt-7a Induces Presynaptic Colocalization of α7-Nicotinic Acetylcholine Receptors and Adenomatous Polyposis Coli in Hippocampal Neurons

Ginny G. Farías; Ana Sofia Valles; Marcela Colombres; Juan A. Godoy; Enrique M. Toledo; Ronald J. Lukas; Francisco J. Barrantes; Nibaldo C. Inestrosa

Nicotinic acetylcholine receptors (nAChRs) contribute significantly to hippocampal function. α7-nAChRs are present in presynaptic sites in hippocampal neurons and may influence transmitter release, but the factors that determine their presynaptic localization are unknown. We report here that Wnt-7a, a ligand active in the canonical Wnt signaling pathway, induces dissociation of the adenomatous polyposis coli (APC) protein from the β-catenin cytoplasmic complex and the interaction of APC with α7-nAChRs in hippocampal neurons. Interestingly, Wnt-7a induces the relocalization of APC to membranes, clustering of APC in neurites, and coclustering of APC with different, presynaptic protein markers. Wnt-7a also increases the number and size of coclusters of α7-nAChRs and APC in presynaptic terminals. These short-term changes in α7-nAChRs occur in the few minutes after ligand exposure and involve translocation to the plasma membrane without affecting total receptor levels. Longer-term exposure to Wnt-7a increases nAChR α7 subunit levels in an APC-independent manner and increases clusters of α7-nAChRs in neurites via an APC-dependent process. Together, these results demonstrate that stimulation through the canonical Wnt pathway regulates the presynaptic localization of APC and α7-nAChRs with APC serving as an intermediary in the α7-nAChR relocalization process. Modulation by Wnt signaling may be essential for α7-nAChR expression and function in synapses.


Cell | 2014

RETRACTED: Vulnerability of Glioblastoma Cells to Catastrophic Vacuolization and Death Induced by a Small Molecule

Satish Srinivas Kitambi; Enrique M. Toledo; Dmitry Usoskin; Shimei Wee; Aditya Harisankar; Richard Svensson; Kristmundur Sigmundsson; Christina Kalderén; Mia Niklasson; Soumi Kundu; Sergi Aranda; Bengt Westermark; Lene Uhrbom; Michael Andäng; Peter Damberg; Sven Nelander; Ernest Arenas; Per Artursson; Julian Walfridsson; Karin Nilsson; Lars Hammarström; Patrik Ernfors

Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer with marginal life expectancy. Based on the assumption that GBM cells gain functions not necessarily involved in the cancerous process, patient-derived glioblastoma cells (GCs) were screened to identify cellular processes amenable for development of targeted treatments. The quinine-derivative NSC13316 reliably and selectively compromised viability. Synthetic chemical expansion reveals delicate structure-activity relationship and analogs with increased potency, termed Vacquinols. Vacquinols stimulate death by membrane ruffling, cell rounding, massive macropinocytic vacuole accumulation, ATP depletion, and cytoplasmic membrane rupture of GCs. The MAP kinase MKK4, identified by a shRNA screen, represents a critical signaling node. Vacquinol-1 displays excellent in vivo pharmacokinetics and brain exposure, attenuates disease progression, and prolongs survival in a GBM animal model. These results identify a vulnerability to massive vacuolization that can be targeted by small molecules and point to the possible exploitation of this process in the design of anticancer therapies.


Nature Chemical Biology | 2013

Brain endogenous liver X receptor ligands selectively promote midbrain neurogenesis

Spyridon Theofilopoulos; Yuqin Wang; Satish Srinivas Kitambi; Paola Sacchetti; Kyle M. Sousa; Karl Bodin; Jayne Kirk; Carmen Saltó; Magnus Gustafsson; Enrique M. Toledo; Kersti Karu; Jan Åke Gustafsson; Knut R. Steffensen; Patrik Ernfors; Jan Sjövall; William J. Griffiths; Ernest Arenas

Liver X receptors (Lxrα and Lxrβ) are ligand-dependent nuclear receptors critical for ventral midbrain neurogenesis in vivo. However, no endogenous midbrain Lxr ligand has so far been identified. Here we used LC/MS and functional assays to identify cholic acid as a new Lxr ligand. Moreover, 24(S),25-epoxycholesterol (24,25-EC) was found to be the most potent and abundant Lxr ligand in the developing mouse midbrain. Both Lxr ligands promoted neural development in an Lxr-dependent manner in zebrafish in vivo. Notably, each ligand selectively regulated the development of distinct midbrain neuronal populations. Whereas cholic acid increased survival and neurogenesis of Brn3a-positive red nucleus neurons, 24,25-EC promoted dopaminergic neurogenesis. These results identify an entirely new class of highly selective and cell type-specific regulators of neurogenesis and neuronal survival. Moreover, 24,25-EC promoted dopaminergic differentiation of embryonic stem cells, suggesting that Lxr ligands may thus contribute to the development of cell replacement and regenerative therapies for Parkinsons disease.


Neurobiology of Aging | 2011

c-Abl tyrosine kinase modulates tau pathology and Cdk5 phosphorylation in AD transgenic mice

Gonzalo I. Cancino; Karen Perez de Arce; Paula U. Castro; Enrique M. Toledo; Rommy von Bernhardi; Alejandra R. Alvarez

The c-Abl tyrosine kinase is an important link in signal transduction pathways that promote cytoskeletal rearrangement and apoptotic signalling. We have previously shown that amyloid-β-peptide (Aβ) activates c-Abl. Herein we show that c-Abl participates in Aβ-induced tau phosphorylation through Cdk5 activation. We found that intraperitoneal administration of STI571, a specific inhibitor for c-Abl kinase, decreased tau phosphorylation in the APPswe/PSEN1ΔE9 transgenic mouse brain. In addition, when neurons were treated with Aβ we observed: (i) an increase in active c-Abl and tau phosphorylation, (ii) the prevention of tau phosphorylation by STI571 and (iii) the inhibition of c-Abl expression by shRNA, as well as the expression of a c-Abl kinase death mutant, decreased AT8 and PHF1 signals. Furthermore, the increase of c-Abl was associated with Tyr15 phosphorylation of Cdk5 and its association with c-Abl. Brains from APPswe/PSEN1ΔE9 mice showed higher levels of c-Abl and phospho-Cdk5 than wild-type mice. Moreover, STI571 treatment decreased the phospho-Cdk5 levels. Together, the evidence suggests that activation of c-Abl by Aβ promotes tau phosphorylation through Tyr15 phosphorylation-mediated Cdk5 activation.


Journal of Cellular Physiology | 2009

Calcium/calmodulin-dependent protein kinase type IV Is a target gene of the Wnt/β-catenin signaling pathway

Macarena S. Arrázola; Lorena Varela-Nallar; Marcela Colombres; Enrique M. Toledo; Fernando Cruzat; Leonardo Pavez; Rodrigo Assar; Andrés Aravena; Mauricio González; Martin A. Montecino; Alejandro Maass; Servet Martínez; Nibaldo C. Inestrosa

Calcium/calmodulin‐dependent protein kinase IV (CaMKIV) plays a key role in the regulation of calcium‐dependent gene expression. The expression of CaMKIV and the activation of CREB regulated genes are involved in memory and neuronal survival. We report here that: (a) a bioinformatic analysis of 15,476 promoters of the human genome predicted several Wnt target genes, being CaMKIV a very interesting candidate; (b) CaMKIV promoter contains TCF/LEF transcription motifs similar to those present in Wnt target genes; (c) biochemical studies indicate that lithium and the canonical ligand Wnt‐3a induce CaMKIV mRNA and protein expression levels in rat hippocampal neurons as well as CaMKIV promoter activity; (d) treatment of hippocampal neurons with Wnt‐3a increases the binding of β‐catenin to the CaMKIV promoter: (e) In vivo activation of the Wnt signaling improve spatial memory impairment and restores the expression of CaMKIV in a mice double transgenic model for Alzheimers disease which shows decreased levels of the kinase. We conclude that CaMKIV is regulated by the Wnt signaling pathway and that its expression could play a role in the neuroprotective function of the Wnt signaling against the Alzheimers amyloid peptide. J. Cell. Physiol. 221: 658–667, 2009.

Collaboration


Dive into the Enrique M. Toledo's collaboration.

Top Co-Authors

Avatar

Nibaldo C. Inestrosa

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alejandra R. Alvarez

Pontifical Catholic University of Chile

View shared research outputs
Researchain Logo
Decentralizing Knowledge