Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carmen Silvia Valente Barbas is active.

Publication


Featured researches published by Carmen Silvia Valente Barbas.


The New England Journal of Medicine | 1998

Effect of a Protective-Ventilation Strategy on Mortality in the Acute Respiratory Distress Syndrome

Marcelo B. P. Amato; Carmen Silvia Valente Barbas; Denise Machado Medeiros; Ricardo Borges Magaldi; Guilherme Schettino; Geraldo Lorenzi-Filho; Ronaldo Adib Kairalla; Daniel Deheinzelin; Carlos Munoz; Roselaine Pinheiro de Oliveira; Teresa Yae Takagaki; Carlos Roberto Ribeiro de Carvalho

BACKGROUND In patients with the acute respiratory distress syndrome, massive alveolar collapse and cyclic lung reopening and overdistention during mechanical ventilation may perpetuate alveolar injury. We determined whether a ventilatory strategy designed to minimize such lung injuries could reduce not only pulmonary complications but also mortality at 28 days in patients with the acute respiratory distress syndrome. METHODS We randomly assigned 53 patients with early acute respiratory distress syndrome (including 28 described previously), all of whom were receiving identical hemodynamic and general support, to conventional or protective mechanical ventilation. Conventional ventilation was based on the strategy of maintaining the lowest positive end-expiratory pressure (PEEP) for acceptable oxygenation, with a tidal volume of 12 ml per kilogram of body weight and normal arterial carbon dioxide levels (35 to 38 mm Hg). Protective ventilation involved end-expiratory pressures above the lower inflection point on the static pressure-volume curve, a tidal volume of less than 6 ml per kilogram, driving pressures of less than 20 cm of water above the PEEP value, permissive hypercapnia, and preferential use of pressure-limited ventilatory modes. RESULTS After 28 days, 11 of 29 patients (38 percent) in the protective-ventilation group had died, as compared with 17 of 24 (71 percent) in the conventional-ventilation group (P<0.001). The rates of weaning from mechanical ventilation were 66 percent in the protective-ventilation group and 29 percent in the conventional-ventilation group (P=0.005): the rates of clinical barotrauma were 7 percent and 42 percent, respectively (P=0.02), despite the use of higher PEEP and mean airway pressures in the protective-ventilation group. The difference in survival to hospital discharge was not significant; 13 of 29 patients (45 percent) in the protective-ventilation group died in the hospital, as compared with 17 of 24 in the conventional-ventilation group (71 percent, P=0.37). CONCLUSIONS As compared with conventional ventilation, the protective strategy was associated with improved survival at 28 days, a higher rate of weaning from mechanical ventilation, and a lower rate of barotrauma in patients with the acute respiratory distress syndrome. Protective ventilation was not associated with a higher rate of survival to hospital discharge.


Anesthesiology | 2015

Protective versus Conventional Ventilation for Surgery: A Systematic Review and Individual Patient Data Meta-analysis.

Ary Serpa Neto; Sabrine N. T. Hemmes; Carmen Silvia Valente Barbas; Martin Beiderlinden; Michelle Biehl; Jan M. Binnekade; Jaume Canet; Ana Fernandez-Bustamante; Emmanuel Futier; Ognjen Gajic; Göran Hedenstierna; Markus W. Hollmann; Samir Jaber; Alf Kozian; Marc Licker; Wen Qian Lin; Andrew Maslow; Stavros G. Memtsoudis; Dinis Reis Miranda; Pierre Moine; Thomas Ng; Domenico Paparella; Christian Putensen; Marco Ranieri; Federica Scavonetto; Thomas F. Schilling; Werner Schmid; Gabriele Selmo; Paolo Severgnini; Juraj Sprung

Background:Recent studies show that intraoperative mechanical ventilation using low tidal volumes (VT) can prevent postoperative pulmonary complications (PPCs). The aim of this individual patient data meta-analysis is to evaluate the individual associations between VT size and positive end–expiratory pressure (PEEP) level and occurrence of PPC. Methods:Randomized controlled trials comparing protective ventilation (low VT with or without high levels of PEEP) and conventional ventilation (high VT with low PEEP) in patients undergoing general surgery. The primary outcome was development of PPC. Predefined prognostic factors were tested using multivariate logistic regression. Results:Fifteen randomized controlled trials were included (2,127 patients). There were 97 cases of PPC in 1,118 patients (8.7%) assigned to protective ventilation and 148 cases in 1,009 patients (14.7%) assigned to conventional ventilation (adjusted relative risk, 0.64; 95% CI, 0.46 to 0.88; P < 0.01). There were 85 cases of PPC in 957 patients (8.9%) assigned to ventilation with low VT and high PEEP levels and 63 cases in 525 patients (12%) assigned to ventilation with low VT and low PEEP levels (adjusted relative risk, 0.93; 95% CI, 0.64 to 1.37; P = 0.72). A dose–response relationship was found between the appearance of PPC and VT size (R2 = 0.39) but not between the appearance of PPC and PEEP level (R2 = 0.08). Conclusions:These data support the beneficial effects of ventilation with use of low VT in patients undergoing surgery. Further trials are necessary to define the role of intraoperative higher PEEP to prevent PPC during nonopen abdominal surgery.


The Lancet Respiratory Medicine | 2016

Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data.

Ary Serpa Neto; Sabrine N. T. Hemmes; Carmen Silvia Valente Barbas; Martin Beiderlinden; Ana Fernandez-Bustamante; Emmanuel Futier; Ognjen Gajic; Mohamed R. El-Tahan; Abdulmohsin A Al Ghamdi; Ersin Günay; Samir Jaber; Serdar Kokulu; Alf Kozian; Marc Licker; Wen Qian Lin; Andrew Maslow; Stavros G. Memtsoudis; Dinis Reis Miranda; Pierre Moine; Thomas Ng; Domenico Paparella; V. Marco Ranieri; Federica Scavonetto; Thomas F. Schilling; Gabriele Selmo; Paolo Severgnini; Juraj Sprung; Sugantha Sundar; Daniel Talmor; Tanja A. Treschan

BACKGROUND Protective mechanical ventilation strategies using low tidal volume or high levels of positive end-expiratory pressure (PEEP) improve outcomes for patients who have had surgery. The role of the driving pressure, which is the difference between the plateau pressure and the level of positive end-expiratory pressure is not known. We investigated the association of tidal volume, the level of PEEP, and driving pressure during intraoperative ventilation with the development of postoperative pulmonary complications. METHODS We did a meta-analysis of individual patient data from randomised controlled trials of protective ventilation during general anesthaesia for surgery published up to July 30, 2015. The main outcome was development of postoperative pulmonary complications (postoperative lung injury, pulmonary infection, or barotrauma). FINDINGS We included data from 17 randomised controlled trials, including 2250 patients. Multivariate analysis suggested that driving pressure was associated with the development of postoperative pulmonary complications (odds ratio [OR] for one unit increase of driving pressure 1·16, 95% CI 1·13-1·19; p<0·0001), whereas we detected no association for tidal volume (1·05, 0·98-1·13; p=0·179). PEEP did not have a large enough effect in univariate analysis to warrant inclusion in the multivariate analysis. In a mediator analysis, driving pressure was the only significant mediator of the effects of protective ventilation on development of pulmonary complications (p=0·027). In two studies that compared low with high PEEP during low tidal volume ventilation, an increase in the level of PEEP that resulted in an increase in driving pressure was associated with more postoperative pulmonary complications (OR 3·11, 95% CI 1·39-6·96; p=0·006). INTERPRETATION In patients having surgery, intraoperative high driving pressure and changes in the level of PEEP that result in an increase of driving pressure are associated with more postoperative pulmonary complications. However, a randomised controlled trial comparing ventilation based on driving pressure with usual care is needed to confirm these findings. FUNDING None.


Critical Care Medicine | 2015

Lung-Protective Ventilation With Low Tidal Volumes and the Occurrence of Pulmonary Complications in Patients Without Acute Respiratory Distress Syndrome: A Systematic Review and Individual Patient Data Analysis.

Ary Serpa Neto; Fabienne D. Simonis; Carmen Silvia Valente Barbas; Michelle Biehl; Rogier M. Determann; Jonathan Elmer; Gilberto Friedman; Ognjen Gajic; Joshua N. Goldstein; Rita Linko; Roselaine Pinheiro de Oliveira; Sugantha Sundar; Daniel Talmor; Esther K. Wolthuis; Marcelo Gama de Abreu; Paolo Pelosi; Marcus J. Schultz

Objective:Protective mechanical ventilation with low tidal volumes is standard of care for patients with acute respiratory distress syndrome. The aim of this individual patient data analysis was to determine the association between tidal volume and the occurrence of pulmonary complications in ICU patients without acute respiratory distress syndrome and the association between occurrence of pulmonary complications and outcome in these patients. Design:Individual patient data analysis. Patients:ICU patients not fulfilling the consensus criteria for acute respiratory distress syndrome at the onset of ventilation. Interventions:Mechanical ventilation with low tidal volume. Measurements and Main Results:The primary endpoint was development of a composite of acute respiratory distress syndrome and pneumonia during hospital stay. Based on the tertiles of tidal volume size in the first 2 days of ventilation, patients were assigned to a “low tidal volume group” (tidal volumes⩽ 7 mL/kg predicted body weight), an “intermediate tidal volume group” (> 7 and < 10 mL/kg predicted body weight), and a “high tidal volume group” (≥ 10 mL/kg predicted body weight). Seven investigations (2,184 patients) were included. Acute respiratory distress syndrome or pneumonia occurred in 23% of patients in the low tidal volume group, in 28% of patients in the intermediate tidal volume group, and in 31% of the patients in the high tidal volume group (adjusted odds ratio [low vs high tidal volume group], 0.72; 95% CI, 0.52–0.98; p = 0.042). Occurrence of pulmonary complications was associated with a lower number of ICU-free and hospital-free days and alive at day 28 (10.0 ± 10.9 vs 13.8 ± 11.6 d; p < 0.01 and 6.1 ± 8.1 vs 8.9 ± 9.4 d; p < 0.01) and an increased hospital mortality (49.5% vs 35.6%; p < 0.01). Conclusions:Ventilation with low tidal volumes is associated with a lower risk of development of pulmonary complications in patients without acute respiratory distress syndrome.


Critical Care | 2004

Ventilator associated pneumonia: comparison between quantitative and qualitative cultures of tracheal aspirates

Luis Fernando Aranha Camargo; Fernando Vinícius De Marco; Carmen Silvia Valente Barbas; C Hoelz; Marco Aurélio Scarpinella Bueno; Milton Rodrigues; Verônica Moreira Amado; Re Caserta; Marinês Dalla Valle Martino; Jacyr Pasternak; Elias Knobel

IntroductionDeferred or inappropriate antibiotic treatment in ventilator-associated pneumonia (VAP) is associated with increased mortality, and clinical and radiological criteria are frequently employed to establish an early diagnosis. Culture results are used to confirm the clinical diagnosis and to adjust or sometimes withdraw antibiotic treatment. Tracheal aspirates have been shown to be useful for these purposes. Nonetheless, little is known about the usefulness of quantitative findings in tracheal secretions for diagnosing VAP.MethodsTo determine the value of quantification of bacterial colonies in tracheal aspirates for diagnosing VAP, we conducted a prospective follow-up study of 106 intensive care unit patients who were under ventilatory support. In total, the findings from 219 sequential weekly evaluations for VAP were examined. Clinical and radiological parameters were recorded and evaluated by three independent experts; a diagnosis of VAP required the agreement of at least two of the three experts. At the same time, cultures of tracheal aspirates were analyzed qualitatively and quantitatively (105 colony-forming units [cfu]/ml and 106 cfu/ml)ResultsQuantitative cultures of tracheal aspirates (105 cfu/ml and 106 cfu/ml) exhibited increased specificity (48% and 78%, respectively) over qualitative cultures (23%), but decreased sensitivity (26% and 65%, respectively) as compared with the qualitative findings (81%). Quantification did not improve the ability to predict a diagnosis of VAP.ConclusionQuantitative cultures of tracheal aspirates in selected critically ill patients have decreased sensitivity when compared with qualitative results, and they should not replace the latter to confirm a clinical diagnosis of VAP or to adjust antimicrobial therapy.


Revista Brasileira De Terapia Intensiva | 2014

Recomendações brasileiras de ventilação mecânica 2013. Parte I

Carmen Silvia Valente Barbas; Alexandre Marini Ísola; Augusto Manoel de Carvalho Farias; Alexandre Biasi Cavalcanti; Ana Maria Casati Gama; Antônio Carlos Magalhães Duarte; Arthur Vianna; Ary Serpa Neto; Bruno de Arruda Bravim; Bruno do Valle Pinheiro; Bruno Franco Mazza; Carlos Roberto Ribeiro de Carvalho; Carlos Toufen Junior; Cid Marcos Nascimento David; Corine Taniguchi; Débora Dutra da Silveira Mazza; Desanka Dragosavac; Diogo Oliveira Toledo; Eduardo Leite Vieira Costa; Eliana Bernardete Caser; Eliezer Silva; Fábio Ferreira Amorim; Felipe Saddy; Filomena Regina Barbosa Gomes Galas; Gisele Sampaio Silva; Gustavo Faissol Janot de Matos; Joäo Claudio Emmerich; Jorge Luís dos Santos Valiatti; José Mario Meira Teles; Josue Almeida Victorino

Perspectives on invasive and noninvasive ventilatory support for critically ill patients are evolving, as much evidence indicates that ventilation may have positive effects on patient survival and the quality of the care provided in intensive care units in Brazil. For those reasons, the Brazilian Association of Intensive Care Medicine (Associacao de Medicina Intensiva Brasileira - AMIB) and the Brazilian Thoracic Society (Sociedade Brasileira de Pneumologia e Tisiologia - SBPT), represented by the Mechanical Ventilation Committee and the Commission of Intensive Therapy, respectively, decided to review the literature and draft recommendations for mechanical ventilation with the goal of creating a document for bedside guidance as to the best practices on mechanical ventilation available to their members. The document was based on the available evidence regarding 29 subtopics selected as the most relevant for the subject of interest. The project was developed in several stages, during which the selected topics were distributed among experts recommended by both societies with recent publications on the subject of interest and/or significant teaching and research activity in the field of mechanical ventilation in Brazil. The experts were divided into pairs that were charged with performing a thorough review of the international literature on each topic. All the experts met at the Forum on Mechanical Ventilation, which was held at the headquarters of AMIB in Sao Paulo on August 3 and 4, 2013, to collaboratively draft the final text corresponding to each sub-topic, which was presented to, appraised, discussed and approved in a plenary session that included all 58 participants and aimed to create the final document.


Critical Care Medicine | 2011

The impact of daily evaluation and spontaneous breathing test on the duration of pediatric mechanical ventilation: a randomized controlled trial.

Flavia Krepel Foronda; Eduardo Juan Troster; Júlio A. Farias; Carmen Silvia Valente Barbas; Alexandre Archanjo Ferraro; Lucília S. Faria; Albert Bousso; Flávia F. Panico; Artur Figueiredo Delgado

Objectives:To assess whether the combination of daily evaluation and use of a spontaneous breathing test could shorten the duration of mechanical ventilation as compared with weaning based on our standard of care. Secondary outcome measures included extubation failure rate and the need for noninvasive ventilation. Design:A prospective, randomized controlled trial. Setting:Two pediatric intensive care units at university hospitals in Brazil. Patients:The trial involved children between 28 days and 15 yrs of age who were receiving mechanical ventilation for at least 24 hrs. Interventions:Patients were randomly assigned to one of two weaning protocols. In the test group, the children underwent a daily evaluation to check readiness for weaning with a spontaneous breathing test with 10 cm H2O pressure support and a positive end-expiratory pressure of 5 cm H2O for 2 hrs. The spontaneous breathing test was repeated the next day for children who failed it. In the control group, weaning was performed according to standard care procedures. Measurements and Main Results:A total of 294 eligible children were randomized, with 155 to the test group and 139 to the control group. The time to extubation was shorter in the test group, where the median mechanical ventilation duration was 3.5 days (95% confidence interval, 3.0 to 4.0) as compared to 4.7 days (95% confidence interval, 4.1 to 5.3) in the control group (p = .0127). This significant reduction in the mechanical ventilation duration for the intervention group was not associated with increased rates of extubation failure or noninvasive ventilation. It represents a 30% reduction in the risk of remaining on mechanical ventilation (hazard ratio: 0.70). Conclusions:A daily evaluation to check readiness for weaning combined with a spontaneous breathing test reduced the mechanical ventilation duration for children on mechanical ventilation for >24 hrs, without increasing the extubation failure rate or the need for noninvasive ventilation.


Critical Care | 2013

Noninvasive ventilation immediately after extubation improves weaning outcome after acute respiratory failure: a randomized controlled trial

Susana R Ornico; Suzana M. Lobo; Helder S Sanches; Maristela Deberaldini; Luciane T Tófoli; Guilherme Schettino; Marcelo Bp Amato; Carlos Roberto Ribeiro de Carvalho; Carmen Silvia Valente Barbas

IntroductionNoninvasive ventilation (NIV), as a weaning-facilitating strategy in predominantly chronic obstructive pulmonary disease (COPD) mechanically ventilated patients, is associated with reduced ventilator-associated pneumonia, total duration of mechanical ventilation, length of intensive care unit (ICU) and hospital stay, and mortality. However, this benefit after planned extubation in patients with acute respiratory failure of various etiologies remains to be elucidated. The aim of this study was to determine the efficacy of NIV applied immediately after planned extubation in contrast to oxygen mask (OM) in patients with acute respiratory failure (ARF).MethodsA randomized, prospective, controlled, unblinded clinical study in a single center of a 24-bed adult general ICU in a university hospital was carried out in a 12-month period. Included patients met extubation criteria with at least 72 hours of mechanical ventilation due to acute respiratory failure, after following the ICU weaning protocol. Patients were randomized immediately before elective extubation, being randomly allocated to one of the study groups: NIV or OM. We compared both groups regarding gas exchange 15 minutes, 2 hours, and 24 hours after extubation, reintubation rate after 48 hours, duration of mechanical ventilation, ICU length of stay, and hospital mortality.ResultsForty patients were randomized to receive NIV (20 patients) or OM (20 patients) after the following extubation criteria were met: pressure support (PSV) of 7 cm H2O, positive end-expiratory pressure (PEEP) of 5 cm H2O, oxygen inspiratory fraction (FiO2) ≤ 40%, arterial oxygen saturation (SaO2) ≥ 90%, and ratio of respiratory rate and tidal volume in liters (f/TV) < 105. Comparing the 20 patients (NIV) with the 18 patients (OM) that finished the study 48 hours after extubation, the rate of reintubation in NIV group was 5% and 39% in OM group (P = 0.016). Relative risk for reintubation was 0.13 (CI = 0.017 to 0.946). Absolute risk reduction for reintubation showed a decrease of 33.9%, and analysis of the number needed to treat was three. No difference was found in the length of ICU stay (P = 0.681). Hospital mortality was zero in NIV group and 22.2% in OM group (P = 0.041).ConclusionsIn this study population, NIV prevented 48 hours reintubation if applied immediately after elective extubation in patients with more than 3 days of ARF when compared with the OM group.Trial Registration numberISRCTN: 41524441.


Critical Care Medicine | 2014

Impact of distinct definitions of acute lung injury on its incidence and outcomes in Brazilian ICUs: prospective evaluation of 7,133 patients*.

Eliana B. Caser; Eliana Zandonade; Ewerton Pereira; Ana Maria Casati Nogueira Gama; Carmen Silvia Valente Barbas

Objectives:Evaluation of prevalence and outcomes of acute lung injury in a large cohort of critically ill patients in Brazil and comparison of predictive receiver operating characteristic curve mortality of American European Consensus conference definition with new Berlin definition of acute respiratory distress syndrome. Design:A 15-month prospective, multicenter, observational study. Setting:Fourteen medical ICUs in Espirito Santo, a state of Brazil. Patients:Mechanically ventilated patients who fulfilled American European Consensus conference criteria of acute lung injury or Berlin definition of acute respiratory distress syndrome. Interventions:Clinical and respiratory data were collected for 7 consecutive days and on the 14 and 28 days. Twenty-eight day mortality, hospital mortality, and predictive receiver operating characteristic curve mortality were calculated. Measurements and Main Results:Of 7,133 patients, 130 patients (1.8%) fulfilled criteria for acute lung injury (American European Consensus conference) or acute respiratory distress syndrome (Berlin definition). Median time for diagnosis was 2 days (interquartile range, 0–3 d). Main risk factors were pneumonia (35.3%) and nonpulmonary sepsis (31.5%). Mean age was 44.2 ± 15.9 years, and 61.5% were men. Mean Acute Physiology and Chronic Health Evaluation II score was 20.7 ± 7.9. Mean PaO2/FIO2 was 206 ± 61.5, significantly lower in nonsurvivors on day 7 (p = 0.003). Mean mechanical ventilation time was 21 ± 15 days. Length of ICU stay was 26.4 ± 18.7 days. Twenty-eight-day mortality was 38.5% (95% CI, 30.1–46.8); hospital mortality was 49.2% (95% CI, 40.6–57.8). Predictive 28-day mortality area under the receiver operating characteristic curve for American European Consensus conference definition was 0.5625 (95% CI, 0.4783–0.6467) and for the Berlin definition 0.5664 (95% CI, 0.4759–0.6568; p = 0.9510). Conclusions:In our population, prevalence of acute lung injury was low, most cases were diagnosed 2 days after ICU admission, and Berlin definition was not different from American European Consensus conference definition in predicting mortality. There are still several problems with the global epidemiology, definition, and mortality predictive indices that should be added to the classification of this still lethal syndrome to improve its predictive mortality power in the future.


Clinics | 2010

Pathological and ultrastructural analysis of surgical lung biopsies in patients with swine-origin influenza type A/H1N1 and acute respiratory failure

Vera Luiza Capelozzi; Edwin Roger Parra; Manoel Ximenes; Ricardo Helbert Bammann; Carmen Silvia Valente Barbas; Marid Irmd Seixas Duarte

BACKGROUND: Cases of H1N1 and other pulmonary infections evolve to acute respiratory failure and death when co‐infections or lung injury predominate over the immune response, thus requiring early diagnosis to improve treatment. OBJECTIVE: To perform a detailed histopathological analysis of the open lung biopsy specimens from five patients with ARDS with confirmed H1N1. METHODS: Lung specimens underwent microbiologic analysis, and examination by optical and electron microscopy. Immunophenotyping was used to characterize macrophages, natural killer, T and B cells, and expression of cytokines and iNOS. RESULTS: The pathological features observed were necrotizing bronchiolitis, diffuse alveolar damage, alveolar hemorrhage and abnormal immune response. Ultrastructural analysis showed viral‐like particles in all cases. CONCLUSIONS: Viral‐like particles can be successfully demonstrated in lung tissue by ultrastructural examination, without confirmation of the virus by RT‐PCR on nasopharyngeal aspirates. Bronchioles and epithelium, rather than endothelium, are probably the primary target of infection, and diffuse alveolar damage the consequence of the effect of airways obliteration and dysfunction on innate immunity, suggesting that treatment should be focused on epithelial repair.

Collaboration


Dive into the Carmen Silvia Valente Barbas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Telma Antunes

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ary Serpa Neto

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge