Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcelo B. P. Amato is active.

Publication


Featured researches published by Marcelo B. P. Amato.


The New England Journal of Medicine | 1998

Effect of a Protective-Ventilation Strategy on Mortality in the Acute Respiratory Distress Syndrome

Marcelo B. P. Amato; Carmen Silvia Valente Barbas; Denise Machado Medeiros; Ricardo Borges Magaldi; Guilherme Schettino; Geraldo Lorenzi-Filho; Ronaldo Adib Kairalla; Daniel Deheinzelin; Carlos Munoz; Roselaine Pinheiro de Oliveira; Teresa Yae Takagaki; Carlos Roberto Ribeiro de Carvalho

BACKGROUND In patients with the acute respiratory distress syndrome, massive alveolar collapse and cyclic lung reopening and overdistention during mechanical ventilation may perpetuate alveolar injury. We determined whether a ventilatory strategy designed to minimize such lung injuries could reduce not only pulmonary complications but also mortality at 28 days in patients with the acute respiratory distress syndrome. METHODS We randomly assigned 53 patients with early acute respiratory distress syndrome (including 28 described previously), all of whom were receiving identical hemodynamic and general support, to conventional or protective mechanical ventilation. Conventional ventilation was based on the strategy of maintaining the lowest positive end-expiratory pressure (PEEP) for acceptable oxygenation, with a tidal volume of 12 ml per kilogram of body weight and normal arterial carbon dioxide levels (35 to 38 mm Hg). Protective ventilation involved end-expiratory pressures above the lower inflection point on the static pressure-volume curve, a tidal volume of less than 6 ml per kilogram, driving pressures of less than 20 cm of water above the PEEP value, permissive hypercapnia, and preferential use of pressure-limited ventilatory modes. RESULTS After 28 days, 11 of 29 patients (38 percent) in the protective-ventilation group had died, as compared with 17 of 24 (71 percent) in the conventional-ventilation group (P<0.001). The rates of weaning from mechanical ventilation were 66 percent in the protective-ventilation group and 29 percent in the conventional-ventilation group (P=0.005): the rates of clinical barotrauma were 7 percent and 42 percent, respectively (P=0.02), despite the use of higher PEEP and mean airway pressures in the protective-ventilation group. The difference in survival to hospital discharge was not significant; 13 of 29 patients (45 percent) in the protective-ventilation group died in the hospital, as compared with 17 of 24 in the conventional-ventilation group (71 percent, P=0.37). CONCLUSIONS As compared with conventional ventilation, the protective strategy was associated with improved survival at 28 days, a higher rate of weaning from mechanical ventilation, and a lower rate of barotrauma in patients with the acute respiratory distress syndrome. Protective ventilation was not associated with a higher rate of survival to hospital discharge.


American Journal of Respiratory and Critical Care Medicine | 2013

Spontaneous Effort Causes Occult Pendelluft during Mechanical Ventilation

Takeshi Yoshida; Vinicius Torsani; Susimeire Gomes; Roberta R. De Santis; Marcelo A. Beraldo; Eduardo Leite Vieira Costa; Mauro R. Tucci; Walter A. Zin; Brian P. Kavanagh; Marcelo B. P. Amato

RATIONALE In normal lungs, local changes in pleural pressure (P(pl)) are generalized over the whole pleural surface. However, in a patient with injured lungs, we observed (using electrical impedance tomography) a pendelluft phenomenon (movement of air within the lung from nondependent to dependent regions without change in tidal volume) that was caused by spontaneous breathing during mechanical ventilation. OBJECTIVES To test the hypotheses that in injured lungs negative P(pl) generated by diaphragm contraction has localized effects (in dependent regions) that are not uniformly transmitted, and that such localized changes in P(pl) cause pendelluft. METHODS We used electrical impedance tomography and dynamic computed tomography (CT) to analyze regional inflation in anesthetized pigs with lung injury. Changes in local P(pl) were measured in nondependent versus dependent regions using intrabronchial balloon catheters. The airway pressure needed to achieve comparable dependent lung inflation during paralysis versus spontaneous breathing was estimated. MEASUREMENTS AND MAIN RESULTS In all animals, spontaneous breathing caused pendelluft during early inflation, which was associated with more negative local P(pl) in dependent regions versus nondependent regions (-13.0 ± 4.0 vs. -6.4 ± 3.8 cm H2O; P < 0.05). Dynamic CT confirmed pendelluft, which occurred despite limitation of tidal volume to less than 6 ml/kg. Comparable inflation of dependent lung during paralysis required almost threefold greater driving pressure (and tidal volume) versus spontaneous breathing (28.0 ± 0.5 vs. 10.3 ± 0.6 cm H2O, P < 0.01; 14.8 ± 4.6 vs. 5.8 ± 1.6 ml/kg, P < 0.05). CONCLUSIONS Spontaneous breathing effort during mechanical ventilation causes unsuspected overstretch of dependent lung during early inflation (associated with reciprocal deflation of nondependent lung). Even when not increasing tidal volume, strong spontaneous effort may potentially enhance lung damage.


Critical Care Medicine | 2000

Use of recruitment maneuvers and high-positive end-expiratory pressure in a patient with acute respiratory distress syndrome.

Benjamin D. Medoff; R. S. Harris; H. Kesselman; Jose G. Venegas; Marcelo B. P. Amato; Dean R. Hess

Objective: To present the use of a novel high‐pressure recruitment maneuver followed by high levels of positive end‐expiratory pressure in a patient with the acute respiratory distress syndrome (ARDS). Design: Observations in one patient. Setting: The medical intensive care unit at a tertiary care university teaching hospital. Patient: A 32‐yr‐old woman with severe ARDS secondary to streptococcal sepsis. Interventions: The patient had severe gas exchange abnormalities because of acute lung injury and marked lung collapse. Attempts to optimize recruitment based on the inflation pressure‐volume (PV) curve were not sufficient to avoid dependent lung collapse. We used a recruitment maneuver using 40 cm H2O of positive end‐expiratory pressure (PEEP) and 20 cm H2O of pressure controlled ventilation above PEEP for 2 mins to successfully recruit the lung. The recruitment was maintained with 25 cm H2O of PEEP, which was much higher than the PEEP predicted by the lower inflection point (PFlex) of the PV curve. Measurements and Main Results: Recruitment was assessed by improvements in oxygenation and by computed tomography of the chest. With the recruitment maneuvers, the patient had a dramatic improvement in gas exchange and we were able to demonstrate nearly complete recruitment of the lung by computed tomography. A PV curve was measured that demonstrated a PFlex of 16‐18 cm H2O. Conclusion: Accumulating data suggest that the maximization and maintenance of lung recruitment may reduce lung parenchymal injury from positive pressure ventilation in ARDS. We demonstrate that in this case PEEP alone was not adequate to recruit the injured lung and that a high‐pressure recruitment maneuver was required. After recruitment, high‐level PEEP was needed to prevent derecruitment and this level of PEEP was not adequately predicted by the PFlex of the PV curve.


Critical Care Medicine | 2001

Repetitive high-pressure recruitment maneuvers required to maximally recruit lung in a sheep model of acute respiratory distress syndrome.

Yuji Fujino; Sven Goddon; Marisa Dolhnikoff; Dean R. Hess; Marcelo B. P. Amato; Robert M. Kacmarek

ObjectiveTo compare the effects of two different recruitment maneuvers repeated multiple times on gas exchange lung injury, hemodynamic, and lung mechanics. DesignRandomized prospective comparison. SettingsAnimal research laboratory. SubjectNineteen fasted Hampshire sheep. InterventionsIn 15 27-kg sheep with saline lavage lung injury, we compared the effects of two recruitment maneuvers: 40 cm H2O continuous positive airway pressure for 60 secs and 40 cm H2O positive end-expiratory pressure with 20 cm H2O pressure control, rate 10 breaths/min, inspiratory to expiratory ratio 1:1 for 2 mins. Each recruitment maneuver was repeated four times, every 30 mins after a 30-sec ventilator disconnection. An additional group received no recruitment maneuvers. Animals were assigned randomly to the three groups and ventilated with 20 cm H2O positive end-expiratory pressure, pressure control 15 cm H2O, rate 20 breaths/min, inspiratory to expiratory ratio 1:1, and Fio2 1.0 between recruitment maneuver periods. Measurements and Main Results Significant and marked increases in Pao2 were observed in the pressure control recruitment maneuver group but only after the second recruitment maneuver. In both the control group and continuous positive airway pressure groups, Pao2 did not significantly increase after any recruitment maneuver compared with baseline injury. There was a significant decrease in cardiac output immediately after some continuous positive airway pressure recruitment maneuvers and a significant increase in mean pulmonary artery pressure in both continuous positive airway pressure and pressure control groups immediately after recruitment maneuvers, but these changes resolved within 10 mins. There were no marked histologic differences between groups and no volutrauma. ConclusionIn this model, maximal lung recruitment was obtained with 40 cm H2O positive end-expiratory pressure and 20 cm H2O pressure control applied repetitively every 30 mins for 2 mins without physiologic or histologic harm. Multiple recruitment maneuvers in some animals were required for maximum effect.


Critical Care Medicine | 2005

Paradoxical responses to positive end-expiratory pressure in patients with airway obstruction during controlled ventilation

Maria Paula Caramez; João Batista Borges; Mauro R. Tucci; Valdelis N. Okamoto; Carlos Roberto Ribeiro de Carvalho; Robert M. Kacmarek; Atul Malhotra; Irineu Tadeu Velasco; Marcelo B. P. Amato

Objective:To reevaluate the clinical impact of external positive end-expiratory pressure (external-PEEP) application in patients with severe airway obstruction during controlled mechanical ventilation. The controversial occurrence of a paradoxic lung deflation promoted by PEEP was scrutinized. Design:External-PEEP was applied stepwise (2 cm H2O, 5-min steps) from zero-PEEP to 150% of intrinsic-PEEP in patients already submitted to ventilatory settings minimizing overinflation. Two commonly used frequencies during permissive hypercapnia (6 and 9/min), combined with two different tidal volumes (VT: 6 and 9 mL/kg), were tested. Setting:A hospital intensive care unit. Patients:Eight patients were enrolled after confirmation of an obstructive lung disease (inspiratory resistance, >20 cm H2O/L per sec) and the presence of intrinsic-PEEP (≥5 cm H2O) despite the use of very low minute ventilation. Interventions:All patients were continuously monitored for intra-arterial blood gas values, cardiac output, lung mechanics, and lung volume with plethysmography. Measurements and Main Results:Three different responses to external-PEEP were observed, which were independent of ventilatory settings. In the biphasic response, isovolume-expiratory flows and lung volumes remained constant during progressive PEEP steps until a threshold, beyond which overinflation ensued. In the classic overinflation response, any increment of external-PEEP caused a decrease in isovolume-expiratory flows, with evident overinflation. In the paradoxic response, a drop in functional residual capacity during external-PEEP application (when compared to zero-external-PEEP) was commonly accompanied by decreased plateau pressures and total-PEEP, with increased isovolume-expiratory flows. The paradoxic response was observed in five of the eight patients (three with asthma and two with chronic obstructive pulmonary disease) during at least one ventilator pattern. Conclusions:External-PEEP application may relieve overinflation in selected patients with airway obstruction during controlled mechanical ventilation. No a priori information about disease, mechanics, or ventilatory settings was predictive of the response. An empirical PEEP trial investigating plateau pressure response in these patients appears to be a reasonable strategy with minimal side effects.


Anesthesiology | 2002

Set positive end-expiratory pressure during protective ventilation affects lung injury.

Muneyuki Takeuchi; Sven Goddon; Marisa Dolhnikoff; Motomu Shimaoka; Dean R. Hess; Marcelo B. P. Amato; Robert M. Kacmarek

BACKGROUND The most appropriate method of determining positive end-expiratory pressure (PEEP) level during a lung protective ventilatory strategy has not been established. METHODS In a lavage-injured sheep acute respiratory distress syndrome model, the authors compared the effects of three approaches to determining PEEP level after a recruitment maneuver: (1) 2 cm H(2)O above the lower inflection point on the inflation pressure-volume curve, (2) at the point of maximum curvature on the deflation pressure-volume curve, and (3) at the PEEP level that maintained target arterial oxygen partial pressure at a fraction of inspired oxygen of 0.5. RESULTS Positive end-expiratory pressure set 2 cm H(2)O above the lower inflection point resulted in the least injury over the course of the study. PEEP based on adequate arterial oxygen partial pressure/fraction of inspired oxygen ratios had to be increased over time and resulted in higher mRNA levels for interleukin-8 and interleukin-1beta and greater tissue inflammation when compared with the other approaches. PEEP at the point of maximum curvature could not maintain eucapneia even at an increased ventilatory rate. CONCLUSION Although generating higher plateau pressures, PEEP levels based on pressure-volume curve analysis were more effective in maintaining gas exchange and minimizing injury than PEEP based on adequate oxygenation. PEEP at 2 cm H(2)O above the lower inflection point was most effective.


Critical Care Medicine | 2008

Real-time detection of pneumothorax using electrical impedance tomography*

Eduardo Leite Vieira Costa; Caroline Nappi Chaves; Susimeire Gomes; Marcelo A. Beraldo; Márcia Souza Volpe; Mauro R. Tucci; Ivany A.L. Schettino; Stephan H. Bohm; Carlos Roberto Ribeiro de Carvalho; Harki Tanaka; Raul Gonzalez Lima; Marcelo B. P. Amato

Objectives:Pneumothorax is a frequent complication during mechanical ventilation. Electrical impedance tomography (EIT) is a noninvasive tool that allows real-time imaging of regional ventilation. The purpose of this study was to 1) identify characteristic changes in the EIT signals associated with pneumothoraces; 2) develop and fine-tune an algorithm for their automatic detection; and 3) prospectively evaluate this algorithm for its sensitivity and specificity in detecting pneumothoraces in real time. Design:Prospective controlled laboratory animal investigation. Setting:Experimental Pulmonology Laboratory of the University of São Paulo. Subjects:Thirty-nine anesthetized mechanically ventilated supine pigs (31.0 ± 3.2 kg, mean ± sd). Interventions:In a first group of 18 animals monitored by EIT, we either injected progressive amounts of air (from 20 to 500 mL) through chest tubes or applied large positive end-expiratory pressure (PEEP) increments to simulate extreme lung overdistension. This first data set was used to calibrate an EIT-based pneumothorax detection algorithm. Subsequently, we evaluated the real-time performance of the detection algorithm in 21 additional animals (with normal or preinjured lungs), submitted to multiple ventilatory interventions or traumatic punctures of the lung. Measurements and Main Results:Primary EIT relative images were acquired online (50 images/sec) and processed according to a few imaging-analysis routines running automatically and in parallel. Pneumothoraces as small as 20 mL could be detected with a sensitivity of 100% and specificity 95% and could be easily distinguished from parenchymal overdistension induced by PEEP or recruiting maneuvers. Their location was correctly identified in all cases, with a total delay of only three respiratory cycles. Conclusions:We created an EIT-based algorithm capable of detecting early signs of pneumothoraces in high-risk situations, which also identifies its location. It requires that the pneumothorax occurs or enlarges at least minimally during the monitoring period. Such detection was operator-free and in quasi real-time, opening opportunities for improving patient safety during mechanical ventilation.


The Lancet Respiratory Medicine | 2016

Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data.

Ary Serpa Neto; Sabrine N. T. Hemmes; Carmen Silvia Valente Barbas; Martin Beiderlinden; Ana Fernandez-Bustamante; Emmanuel Futier; Ognjen Gajic; Mohamed R. El-Tahan; Abdulmohsin A Al Ghamdi; Ersin Günay; Samir Jaber; Serdar Kokulu; Alf Kozian; Marc Licker; Wen Qian Lin; Andrew Maslow; Stavros G. Memtsoudis; Dinis Reis Miranda; Pierre Moine; Thomas Ng; Domenico Paparella; V. Marco Ranieri; Federica Scavonetto; Thomas F. Schilling; Gabriele Selmo; Paolo Severgnini; Juraj Sprung; Sugantha Sundar; Daniel Talmor; Tanja A. Treschan

BACKGROUND Protective mechanical ventilation strategies using low tidal volume or high levels of positive end-expiratory pressure (PEEP) improve outcomes for patients who have had surgery. The role of the driving pressure, which is the difference between the plateau pressure and the level of positive end-expiratory pressure is not known. We investigated the association of tidal volume, the level of PEEP, and driving pressure during intraoperative ventilation with the development of postoperative pulmonary complications. METHODS We did a meta-analysis of individual patient data from randomised controlled trials of protective ventilation during general anesthaesia for surgery published up to July 30, 2015. The main outcome was development of postoperative pulmonary complications (postoperative lung injury, pulmonary infection, or barotrauma). FINDINGS We included data from 17 randomised controlled trials, including 2250 patients. Multivariate analysis suggested that driving pressure was associated with the development of postoperative pulmonary complications (odds ratio [OR] for one unit increase of driving pressure 1·16, 95% CI 1·13-1·19; p<0·0001), whereas we detected no association for tidal volume (1·05, 0·98-1·13; p=0·179). PEEP did not have a large enough effect in univariate analysis to warrant inclusion in the multivariate analysis. In a mediator analysis, driving pressure was the only significant mediator of the effects of protective ventilation on development of pulmonary complications (p=0·027). In two studies that compared low with high PEEP during low tidal volume ventilation, an increase in the level of PEEP that resulted in an increase in driving pressure was associated with more postoperative pulmonary complications (OR 3·11, 95% CI 1·39-6·96; p=0·006). INTERPRETATION In patients having surgery, intraoperative high driving pressure and changes in the level of PEEP that result in an increase of driving pressure are associated with more postoperative pulmonary complications. However, a randomised controlled trial comparing ventilation based on driving pressure with usual care is needed to confirm these findings. FUNDING None.


American Journal of Respiratory and Critical Care Medicine | 2017

An official American Thoracic Society/European Society of intensive care medicine/society of critical care medicine clinical practice guideline: Mechanical ventilation in adult patients with acute respiratory distress syndrome

Eddy Fan; Lorenzo Del Sorbo; Ewan C. Goligher; Carol L. Hodgson; Laveena Munshi; Allan J. Walkey; Neill K. J. Adhikari; Marcelo B. P. Amato; Richard D. Branson; Roy G. Brower; Niall D. Ferguson; Ognjen Gajic; Luciano Gattinoni; Dean R. Hess; Jordi Mancebo; Maureen O. Meade; Daniel F. McAuley; Antonio Pesenti; V. Marco Ranieri; Gordon D. Rubenfeld; Eileen Rubin; Maureen Seckel; Arthur S. Slutsky; Daniel Talmor; B. Taylor Thompson; Hannah Wunsch; Elizabeth Uleryk; Jan Brozek; Laurent Brochard

Background: This document provides evidence‐based clinical practice guidelines on the use of mechanical ventilation in adult patients with acute respiratory distress syndrome (ARDS). Methods: A multidisciplinary panel conducted systematic reviews and metaanalyses of the relevant research and applied Grading of Recommendations, Assessment, Development, and Evaluation methodology for clinical recommendations. Results: For all patients with ARDS, the recommendation is strong for mechanical ventilation using lower tidal volumes (4‐8 ml/kg predicted body weight) and lower inspiratory pressures (plateau pressure < 30 cm H2O) (moderate confidence in effect estimates). For patients with severe ARDS, the recommendation is strong for prone positioning for more than 12 h/d (moderate confidence in effect estimates). For patients with moderate or severe ARDS, the recommendation is strong against routine use of high‐frequency oscillatory ventilation (high confidence in effect estimates) and conditional for higher positive end‐expiratory pressure (moderate confidence in effect estimates) and recruitment maneuvers (low confidence in effect estimates). Additional evidence is necessary to make a definitive recommendation for or against the use of extracorporeal membrane oxygenation in patients with severe ARDS. Conclusions: The panel formulated and provided the rationale for recommendations on selected ventilatory interventions for adult patients with ARDS. Clinicians managing patients with ARDS should personalize decisions for their patients, particularly regarding the conditional recommendations in this guideline.


Intensive Care Medicine | 2016

Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives

Tommaso Mauri; Takeshi Yoshida; Giacomo Bellani; Ewan C. Goligher; Guillaume Carteaux; Nuttapol Rittayamai; Francesco Mojoli; Davide Chiumello; Lise Piquilloud; Salvatore Grasso; Amal Jubran; Franco Laghi; Sheldon Magder; Antonio Pesenti; Stephen H. Loring; Luciano Gattinoni; Daniel Talmor; Lluis Blanch; Marcelo B. P. Amato; Lu Chen; Laurent Brochard; Jordi Mancebo

PurposeEsophageal pressure (Pes) is a minimally invasive advanced respiratory monitoring method with the potential to guide management of ventilation support and enhance specific diagnoses in acute respiratory failure patients. To date, the use of Pes in the clinical setting is limited, and it is often seen as a research tool only.MethodsThis is a review of the relevant technical, physiological and clinical details that support the clinical utility of Pes.ResultsAfter appropriately positioning of the esophageal balloon, Pes monitoring allows titration of controlled and assisted mechanical ventilation to achieve personalized protective settings and the desired level of patient effort from the acute phase through to weaning. Moreover, Pes monitoring permits accurate measurement of transmural vascular pressure and intrinsic positive end-expiratory pressure and facilitates detection of patient–ventilator asynchrony, thereby supporting specific diagnoses and interventions. Finally, some Pes-derived measures may also be obtained by monitoring electrical activity of the diaphragm.ConclusionsPes monitoring provides unique bedside measures for a better understanding of the pathophysiology of acute respiratory failure patients. Including Pes monitoring in the intensivist’s clinical armamentarium may enhance treatment to improve clinical outcomes.

Collaboration


Dive into the Marcelo B. P. Amato's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mauro R. Tucci

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge