Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carminia Maria Della Corte is active.

Publication


Featured researches published by Carminia Maria Della Corte.


Clinical Cancer Research | 2013

Synergistic effects of metformin treatment in combination with gefitinib, a selective EGFR tyrosine kinase inhibitor, in LKB1 wild-type NSCLC cell lines

Floriana Morgillo; Ferdinando Carlo Sasso; Carminia Maria Della Corte; D. Vitagliano; Elena D'Aiuto; Teresa Troiani; Erika Martinelli; Ferdinando De Vita; Michele Orditura; Raffaele De Palma; Fortunato Ciardiello

Purpose: EGF receptor (EGFR) tyrosine kinase inhibitors (TKI) have been found to be effective against lung cancer, but clinical resistance to these agents has developed as their usage has increased. Metformin is a widely used antidiabetic drug and also displays significant growth-inhibitory and proapoptotic effects in several cancer models, alone or in combination with chemotherapeutic drugs. Experimental Design: The effects of gefitinib, a selective EGFR-TKI, and metformin on a panel of non–small cell lung cancer (NSCLC) cell lines were assessed by using MTT, bromide assay, flow cytometry, anchorage-independent growth, coimmunoprecipitation, and Western blot analysis. Results: The combination of metformin with gefitinib induced a strong antiproliferative and proapoptotic effect in NSCLC cell lines that harbored wild-type LKB1 gene. Treatment with metformin as single agent, however, induced an activation and phosphorylation of mitogen-activated protein kinase (MAPK) through an increased C-RAF/B-RAF heterodimerization. The inhibition of EGFR phosphorylation and of downstream signaling by adding gefitinib to metformin treatment abrogated this phenomenon and induced a strong apoptotic effect in vitro and in vivo. Conclusions: Metformin and gefitinib are synergistic in LKB1 wild-type NSCLC cells. However, further studies are required to investigate better the effect of metformin action on the RAS/RAF/MAPK pathway and the best context in which to use metformin in combination with molecular targeted agents. Clin Cancer Res; 19(13); 3508–19. ©2013 AACR.


ESMO Open | 2016

Mechanisms of resistance to EGFR-targeted drugs: lung cancer

Floriana Morgillo; Carminia Maria Della Corte; Morena Fasano; Fortunato Ciardiello

Despite the improvement in clinical outcomes derived by the introduction of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs) in the treatment of patients with advanced non-small cell lung cancer (NSCLC) whose tumours harbour EGFR-activating mutations, prognosis remains unfavourable because of the occurrence of either intrinsic or acquired resistance. We reviewed the published literature and abstracts of oral and poster presentations from international conferences addressing EGFR-TKIs resistance mechanisms discovered in preclinical models and in patients with NSCLC. The molecular heterogeneity of lung cancer has several implications in terms of possible mechanisms of either intrinsic or acquired resistance to EGFR-targeted inhibitors. Several mechanisms of resistance have been described to EGFR-TKIs, such as the occurrence of secondary mutation (T790M, C797S), the activation of alternative signalling (Met, HGF, AXL, Hh, IGF-1R), the aberrance of the downstream pathways (AKT mutations, loss of PTEN), the impairment of the EGFR-TKIs-mediated apoptosis pathway (BCL2-like 11/BIM deletion polymorphism) and histological transformation. Although some of the mechanisms of resistance have been identified, much additional information is needed to understand and overcome resistance to EGFR-TKI agents. The majority of resistance mechanisms described are the result of a selection of pre-existing clones; thus, studies on the mechanisms by which subclonal alterations have an impact on tumour biology and influence cancer progression are extremely important in order to define the best treatment strategy.


Clinical Cancer Research | 2015

SMO Gene Amplification and Activation of the Hedgehog Pathway as Novel Mechanisms of Resistance to Anti-Epidermal Growth Factor Receptor Drugs in Human Lung Cancer

Carminia Maria Della Corte; Claudio Bellevicine; Giovanni Vicidomini; D. Vitagliano; Umberto Malapelle; Marina Accardo; Alessio Fabozzi; Alfonso Fiorelli; Morena Fasano; F. Papaccio; Erika Martinelli; Teresa Troiani; Giancarlo Troncone; Mario Santini; Roberto Bianco; Fortunato Ciardiello; Floriana Morgillo

Purpose: Resistance to tyrosine kinase inhibitors (TKI) of EGF receptor (EGFR) is often related to activation of other signaling pathways and evolution through a mesenchymal phenotype. Experimental Design: Because the Hedgehog (Hh) pathway has emerged as an important mediator of epithelial-to-mesenchymal transition (EMT), we studied the activation of Hh signaling in models of EGFR-TKIs intrinsic or acquired resistance from both EGFR-mutated and wild-type (WT) non–small cell lung cancer (NSCLC) cell lines. Results: Activation of the Hh pathway was found in both models of EGFR-mutated and EGFR-WT NSCLC cell line resistant to EGFR-TKIs. In EGFR-mutated HCC827-GR cells, we found SMO (the Hh receptor) gene amplification, MET activation, and the functional interaction of these two signaling pathways. In HCC827-GR cells, inhibition of SMO or downregulation of GLI1 (the most important Hh-induced transcription factor) expression in combination with MET inhibition exerted significant antitumor activity. In EGFR-WT NSCLC cell lines resistant to EGFR inhibitors, the combined inhibition of SMO and EGFR exerted a strong antiproliferative activity with a complete inhibition of PI3K/Akt and MAPK phosphorylation. In addition, the inhibition of SMO by the use of LDE225 sensitizes EGFR-WT NSCLC cells to standard chemotherapy. Conclusions:This result supports the role of the Hh pathway in mediating resistance to anti-EGFR-TKIs through the induction of EMT and suggests new opportunities to design new treatment strategies in lung cancer. Clin Cancer Res; 21(20); 4686–97. ©2015 AACR.


Journal of Thoracic Oncology | 2015

Pulmonary Large-Cell Neuroendocrine Carcinoma: From Epidemiology to Therapy

Morena Fasano; Carminia Maria Della Corte; F. Papaccio; Fortunato Ciardiello; Floriana Morgillo

Lung neuroendocrine tumors are a heterogeneous subtype of pulmonary cancers representing approximately 20% of all lung cancers, including small-cell lung cancer (SCLC) and large-cell neuroendocrine carcinoma (LCNEC). The frequency appears to be approximately 3% for LCNEC. Diagnosis of LCNEC requires attention to neuroendocrine features by light microscopy and confirmation by immunohistochemical staining for neuroendocrine markers. Both SCLC and pulmonary LCNEC are high-grade and poor-prognosis tumors, with higher incidence in males and smokers and peripheral localization. LCNEC is very rare, and the precise diagnosis on small specimens is very difficult, so we have still too few data to define a standard of treatment for pulmonary LCNECs. Data of literature, most based on retrospective analysis, indicated a poor 5-year overall survival, with a high incidence of recurrence after surgery, even in stage I disease. Primary surgery should be the first option in all operable patients because there is no validate therapeutic approach for LCNEC due to lack of clinical trials in this setting. Neoadjuvant platinum-based regimens remain only an option for potentially resectable tumors. In advanced stages, SCLC-like chemotherapy seems the best option of treatment, with a good response rate but a poor overall survival (from 8 to 16 months in different case series). New agents are under clinical investigation to improve LCNEC patients’ outcome. We reviewed all data on treatment options feasible for pulmonary LCNEC, both for localized and extensive disease.


World Journal of Gastroenterology | 2016

Mechanisms of resistance to anti-epidermal growth factor receptor inhibitors in metastatic colorectal cancer

V. Sforza; Erika Martinelli; Fortunato Ciardiello; Valentina Gambardella; Stefania Napolitano; G. Martini; Carminia Maria Della Corte; C. Cardone; Marianna Luciana Ferrara; Alfonso Reginelli; Giuseppina Liguori; Giulio Belli; Teresa Troiani

The prognosis of patients with metastatic colorectal cancer (mCRC) remain poor despite the impressive improvement of treatments observed over the last 20 years that led to an increase in median overall survival from 6 mo, with the only best supportive care, to approximately 30 mo with the introduction of active chemotherapy drugs and targeted agents. The monoclonal antibodies (moAbs) cetuximab and panitumumab, directed against the epidermal growth factor receptor (EGFR), undoubtedly represent a major step forward in the treatment of mCRC, given the relevant efficacy in terms of progression-free survival, overall survival, response rate, and quality of life observed in several phase III clinical trials among different lines of treatment. However, the anti-EGFR moAbs were shown only to be effective in a subset of patients. For instance, KRAS and NRAS mutations have been identified as biomarkers of resistance to these drugs, improving the selection of patients who might derive a benefit from these treatments. Nevertheless, several other alterations might affect the response to these drugs, and unfortunately, even the responders eventually become resistant by developing secondary (or acquired) resistance in approximately 13-18 mo. Several studies highlighted that the landscape of responsible alterations of both primary and acquired resistance to anti-EGFR drugs biochemically converge into MEK-ERK and PIK3CA-AKT pathways. In this review, we describe the currently known mechanisms of primary and acquired resistance to anti-EGFR moAbs together with the various strategies evaluated to prevent, overcame or revert them.


Oncotarget | 2016

Metformin increases antitumor activity of MEK inhibitors through GLI1 downregulation in LKB1 positive human NSCLC cancer cells

Carminia Maria Della Corte; V. Ciaramella; Concetta Di Mauro; Maria Domenica Castellone; Federica Papaccio; Morena Fasano; Ferdinando Carlo Sasso; Erika Martinelli; Teresa Troiani; Ferdinando De Vita; Michele Orditura; Roberto Bianco; Fortunato Ciardiello; Floriana Morgillo

Purpose Metformin, widely used as antidiabetic drug, showed antitumoral effects expecially in combination with chemotherapy. Our group recently has demonstrated that metformin and gefitinib are synergistic in LKB1-wild-type NSCLC cells. In these models, metformin as single agent induced an activation and phosphorylation of mitogen-activated-protein-kinase (MAPK) through an increased C-RAF/B-RAF heterodimerization. Experimental design Since single agent metformin enhances proliferating signals through the RAS/RAF/MAPK pathway, and several MEK inhibitors (MEK-I) demonstrated clinical efficacy in combination with other agents in NSCLC, we tested the effects of metformin plus MEK-I (selumetinib or pimasertib) on proliferation, invasiveness, migration abilities in vitro and in vivo in LKB1 positive NSCLC models harboring KRAS wild type and mutated gene. Results The combination of metformin with MEK-I showed a strong anti-proliferative and proapoptotic effect in Calu-3, H1299, H358 and H1975 human NSCLC cell lines, independently from the KRAS mutational status. The combination reduced the metastatic behaviour of NSCLC cells, via a downregulation of GLI1 trascritional activity, thus affecting the transition from an epithelial to a mesenchymal phenotype. Metformin and MEK-Is combinations also decreased the production and activity of MMP-2 and MMP-9 by reducing the NF-jB (p65) binding to MMP-2 and MMP-9 promoters. Conclusions Metformin potentiates the antitumor activity of MEK-Is in human LKB1-wild-type NSCLC cell lines, independently from the KRAS mutational status, through GLI1 downregulation and by reducing the NF-jB (p65)-mediated transcription of MMP-2 and MMP-9.


ESMO Open | 2016

Therapeutic value of EGFR inhibition in CRC and NSCLC: 15 years of clinical evidence

Teresa Troiani; Stefania Napolitano; Carminia Maria Della Corte; G. Martini; Erika Martinelli; Floriana Morgillo; Fortunato Ciardiello

Epidermal growth factor receptor (EGFR) plays a key role in tumour evolution, proliferation and immune evasion, and is one of the most important targets for biological therapy, especially for non-small-cell lung cancer (NSCLC) and colorectal cancer (CRC). In the past 15 years, several EGFR antagonists have been approved for the treatment of NSCLC and metastatic CRC (mCRC). To optimise the use of anti-EGFR agents in clinical practice, various clinical and molecular biomarkers have been investigated, thus moving their indication from unselected to selected populations. Nowadays, anti-EGFR drugs represent a gold-standard therapy for metastatic NSCLC harbouring EGFR activating mutation and for RAS wild-type mCRC. Their clinical efficacy is limited by the presence of intrinsic resistance or the onset of acquired resistance. In this review, we provide an overview of the antitumour activity of EGFR inhibitors in NSCLC and CRC and of mechanisms of resistance, focusing on the development of a personalised approach through 15 years of preclinical and clinical research.


Expert Opinion on Investigational Drugs | 2014

Type III or allosteric kinase inhibitors for the treatment of non-small cell lung cancer

Morena Fasano; Carminia Maria Della Corte; Raffaele Califano; Annalisa Capuano; Teresa Troiani; Erika Martinelli; Fortunato Ciardiello; Floriana Morgillo

Introduction: In recent times, there has been much interest in the development of pharmacological kinase inhibitors that treat NSCLC. Furthermore, treatment options have been guided by the development of a wide panel of synthetic small molecule kinase inhibitors. Most of the molecules developed belong to the type I class of inhibitors that target the ATP-binding site in its active conformation. The high sequence similarity in the ATP-binding site among members of the kinase families often results in low selectivity and additional toxicities. Also, second mutations in the ATP-binding site, such as threonine to methionine at position 790, have been described as a mechanism of resistance to ATP-competitive kinase inhibitors. For these reasons, alternative drug development approaches targeting sites other than the ATP cleft are being pursued. The class III or allosteric inhibitors, which bind outside the ATP-binding site, have been shown to negatively modulate kinase activity. Areas covered: In this review, the authors discuss the most well-characterised allosteric inhibitors that have reached clinical development in NSCLC. Expert opinion: Great progress has made in developing inhibitors with entirely new modes of action. That being said, it is important to highlight that despite their apparent simplicity, biochemical assays will remain at the core of drug discovery activities to better explore these new opportunities.


Expert Opinion on Investigational Drugs | 2013

Metformin in lung cancer: rationale for a combination therapy.

Floriana Morgillo; Ferdinando Carlo Sasso; Carminia Maria Della Corte; Lucia Festino; Anna Manzo; Erika Martinelli; Teresa Troiani; Annalisa Capuano; Fortunato Ciardiello

Introduction: Metformin is a widely used antidiabetic drug, which also displays significant growth inhibitory and proapoptotic effects in several cancer models, including lung cancer, alone or in combination with chemotherapeutic drugs. Areas covered: The role of metformin as a chemopreventive drug in lung cancer is still an object of debate as epidemiological studies have shown contrasting results. More preclinical data support its role as an adjuvant drug in the treatment of lung cancer, in combination with chemotherapy or targeted molecular drugs, although the complete mechanism of action of metformin is still unclear, and potentially may exert unexpected effects with contradictory clinical implications. Expert opinion: Future perspective studies are required in nonsmall-cell lung cancer (NSCLC) patients to better investigate the effect of metformin action on the RAS/RAF/MAPK pathway and the best context in which to use metformin in combination with molecularly targeted agents.


Oncotarget | 2017

Efficacy of continuous EGFR-inhibition and role of Hedgehog in EGFR acquired resistance in human lung cancer cells with activating mutation of EGFR

Carminia Maria Della Corte; Umberto Malapelle; Elena Vigliar; Francesco Pepe; Giancarlo Troncone; V. Ciaramella; Teresa Troiani; Erika Martinelli; Valentina Belli; Fortunato Ciardiello; Floriana Morgillo

Purpose The aim of this work was to investigate the efficacy of sequential treatment with first-, second- and third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors and the mechanisms of acquired resistance occurring during the sequential use of these inhibitors. Experimental design We developed an in vivo model of acquired resistance to EGFR-inhibitors by treating nude mice xenografted with HCC827, a human non-small-cell lung cancer (NSCLC) cell line harboring EGFR activating mutation, with a sequence of first-generation EGFR tyrosine kinase inhibitors (EGFR-TKIs) (erlotinib and gefitinib), of second-generation EGFR-TKI (afatinib) plus/minus the anti-EGFR monoclonal antibody cetuximab, and of third-generation EGFR-TKI (osimertinib). Results HCC827-derived xenografts and with acquired resistance to EGFR-inhibitors were sensitive to the sequential use of first-, second- and third-generation EGFR-TKIs. Continuous EGFR inhibition of first-generation resistant tumors by sequential treatment with afatinib plus/minus cetuximab, followed by osimertinib, represented an effective therapeutic strategy in this model. Whereas T790M resistance mutation was not detected, a major mechanism of acquired resistance was the activation of components of the Hedgehog (Hh) pathway. This phenomenon was accompanied by epithelial-to-mesenchymal transition. Cell lines established in vitro from gefitinib-, or afatinib- or osimertinib-resistant tumors showed metastatic properties and maintained EGFR-TKIs resistance in vitro, that was reverted by the combined blockade of Hh, with the selective SMO inhibitor sonidegib, and EGFR. Conclusions EGFR-mutant NSCLC can benefit from continuous treatment with EGFR-inhibitors, indepenently from mechanisms of resistance. In a complex and heterogenous scenario, Hh showed an important role in mediating resistance to EGFR-inhibitors through the induction of mesenchymal properties.

Collaboration


Dive into the Carminia Maria Della Corte's collaboration.

Top Co-Authors

Avatar

Fortunato Ciardiello

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Floriana Morgillo

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Erika Martinelli

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Teresa Troiani

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Morena Fasano

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

F. Papaccio

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Ferdinando Carlo Sasso

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Ferdinando De Vita

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

G. Martini

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Annalisa Capuano

Seconda Università degli Studi di Napoli

View shared research outputs
Researchain Logo
Decentralizing Knowledge