Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carola Cavallo is active.

Publication


Featured researches published by Carola Cavallo.


Journal of Bone and Joint Surgery, American Volume | 2014

Comparison of Platelet-Rich Plasma Formulations for Cartilage Healing An in Vitro Study

Carola Cavallo; Giuseppe Filardo; Erminia Mariani; Elizaveta Kon; Maurilio Marcacci; Maria Teresa Pereira Ruiz; Andrea Facchini; Brunella Grigolo

BACKGROUND Platelet-rich plasma (PRP) has been advocated as one treatment for cartilage tissue regeneration. To date, several different platelet-rich formulations have been available, but a deep knowledge of their composition and mechanism of action in a specific clinical use is needed. The aim of this study was to investigate the effect of various PRP formulations on human chondrocytes in vitro. METHODS Blood from ten human volunteers was used to prepare three formulations: (1) PRP with a relatively low concentration of platelets and very few leukocytes (P-PRP), (2) PRP with high concentrations of both platelets and leukocytes (L-PRP), and (3) platelet-poor plasma (PPP). Selected growth factors in the formulations were measured, and the in vitro effects of various concentrations were tested by exposing chondrocytes isolated from osteoarthritic cartilage of four different men and measuring cell proliferation, matrix production, and gene expression. RESULTS L-PRP contained the highest levels of growth factors and cytokines. All three formulations stimulated chondrocyte proliferation throughout the culture period evaluated; the only significant difference among the formulations was on day 7, when P-PRP induced greater cell growth compared with the other two formulations. P-PRP stimulated chondrocyte anabolism, as shown by the expression of type-II collagen and aggrecan, whereas L-PRP promoted catabolic pathways involving various cytokines. However, L-PRP induced greater expression of the hyaluronic acid synthase-2 gene and greater production of hyaluronan compared with P-PRP. CONCLUSIONS L-PRP and P-PRP induced distinct effects on human articular chondrocytes in vitro, possibly because of differences in the concentrations of platelets, leukocytes, growth factors, and other bioactive molecules. The identification of the optimal amounts and ratios of these blood components could ideally lead to a formulation more suitable for the treatment of cartilage lesions.


Journal of Cellular Physiology | 2006

CXCL12 (SDF‐1) and CXCL13 (BCA‐1) chemokines significantly induce proliferation and collagen type I expression in osteoblasts from osteoarthritis patients

Gina Lisignoli; Stefania Toneguzzi; Anna Piacentini; Sandra Cristino; Francesco Grassi; Carola Cavallo; Andrea Facchini

To evaluate the role of CXC chemokines CXCL8 (IL8), CXCL10 (IP‐10), CXCL12 (SDF‐1), and CXCL13 (BCA‐1) in bone remodeling, we analyzed their effects on osteoblasts (OBs) obtained from subchondral trabecular bone tissue of osteoarthritis (OA) and post‐traumatic (PT) patients. The expression of CXC receptors/ligands (CXCR1/CXCL8, CXCR2/CXCL8, CXCR3/CXCL10, CXCR4/CXCL12, and CXCR5/CXCL13) was analyzed in cultured OBs by flow cytometry and immunocytochemistry. Functional assays on CXC chemokine‐treated‐OBs in the presence or absence of their specific inhibitors were performed to analyze cellular proliferation and the enzymatic response to chemokine activation. The expression of chemokine ligands/receptors was also confirmed in bone tissue samples by immunohistochemical analysis. Collagen type I and alkaline phosphatase mRNA expression were analyzed on CXCL12‐ and CXCL13‐treated OBs by real‐time PCR. OBs from both OA and PT patients expressed high levels of CXCR3 and CXCR5 and lower amounts of CXCR1 and CXCR4. CXCL12 and CXCL13, only in OBs from OA patients, induced a significant proliferation that was also confirmed by specific blocking experiments. Moreover, OBs from OA patients released a higher amount of CXCL13 than those of PT patients while no differences were found for CXCL12. In the remodeling area of bone tissue samples, immunohistochemical analysis confirmed that OBs expressed CXCL12/CXCR4 and CXCL13/CXCR5 both in OA and PT samples. CXCL12 and CXCL13 upregulated collagen type I mRNA expression in OBs from OA patients. These data suggest that CXCL12 and CXCL13 may directly modulate cellular proliferation and collagen type I in OA patients, so contributing to the remodeling process that occurs in the evolution of this disease.


Journal of Cellular Biochemistry | 2011

Comparison of alternative mesenchymal stem cell sources for cell banking and musculoskeletal advanced therapies

Carola Cavallo; Carmela Cuomo; Sara Fantini; Francesca Ricci; Pier Luigi Tazzari; Enrico Lucarelli; Davide Donati; Andrea Facchini; Gina Lisignoli; Pier Maria Fornasari; Brunella Grigolo; Lorenzo Moroni

With the continuous discovery of new alternative sources containing mesenchymal stem cells (MSCs), regenerative medicine therapies may find tailored applications in the clinics. Although these cells have been demonstrated to express specific mesenchymal markers and are able to differentiate into mesenchymal lineages in ad hoc culture conditions, it is still critical to determine the yield and differentiation potential of these cells in comparative studies under the same standardized culture environment. Moreover, the opportunity to use MSCs from bone marrow (BM) of multiorgan donors for cell banking is of relevant importance. In the attempt to establish the relative potential of alternative MSCs sources, we analyzed and compared the yield and differentiation potential of human MSCs from adipose and BM tissues of cadaveric origins, and from fetal annexes (placenta and umbilical cord) after delivery using standardized isolation and culture protocols. BM contained a significantly higher amount of mononuclear cells (MNCs) compared to the other tissue sources. Nonetheless, a higher cell seeding density was needed for these cells to successfully isolate MSCs. The MNCs populations were highly heterogeneous and expressed variable MSCs markers with a large variation from donor to donor. After MSCs selection through tissue culture plastic adhesion, cells displayed a comparable proliferation capacity with distinct colony morphologies and were positive for a pool of typical MSCs markers. In vitro differentiation assays showed a higher osteogenic differentiation capacity of adipose tissue and BM MSCs, and a higher chondrogenic differentiation capacity of BM MSCs. J. Cell. Biochem. 112: 1418–1430, 2011.


Experimental Gerontology | 2004

IL1β and TNFα differently modulate CXCL13 chemokine in stromal cells and osteoblasts isolated from osteoarthritis patients: Evidence of changes associated to cell maturation

Gina Lisignoli; Sandra Cristino; Stefania Toneguzzi; Francesco Grassi; Anna Piacentini; Carola Cavallo; Andrea Facchini; Erminia Mariani

Bone homeostasis is regulated by cells at different stages of maturation that are influenced by soluble factors. The modulatory function of two pro-inflammatory cytokines, IL-1beta and TNF-alpha, on the expression of CXCL13 chemokine was evaluated in osteoblasts (OB) and bone marrow stromal cells (BMSC) from osteoarthritis (OA) and post-traumatic (PT) patients. In basal condition, CXCL13 production by both BMSC and OB was significantly higher in OA than in PT patients. IL1beta, significantly induced CXCL13 production in differentiated OB, both from OA and PT patients, but not in BMSC from both either group. TNFalpha reduced CXCL13 production only in BMSC from OA patients. The combination of IL1beta and TNFalpha increased CXCL13 production only in OB in the same amount as for IL-1beta alone. OB from OA released a higher amount of CXCL13 compared to PT in all conditions tested. CD121a (IL1 receptor type I) was highly expressed only by OB. Moreover, in bone tissue biopsies CXCL13 was expressed by mesenchymal and mononuclear cells. This study demonstrates that cells at different stages of maturation (BMSC and OB) and derived from physiological (PT) or pathological conditions (OA) respond in different ways to inflammatory stimuli. These data may contribute to understand the basic maturation processes of bone cells in old patients.


Oncotarget | 2015

All-trans retinoic acid and rapamycin normalize Hutchinson Gilford progeria fibroblast phenotype

Camilla Pellegrini; Marta Columbaro; Cristina Capanni; Maria Rosaria D’Apice; Carola Cavallo; Michela Murdocca; Giovanna Lattanzi; Stefano Squarzoni

Hutchinson Gilford progeria syndrome is a fatal disorder characterized by accelerated aging, bone resorption and atherosclerosis, caused by a LMNA mutation which produces progerin, a mutant lamin A precursor. Progeria cells display progerin and prelamin A nuclear accumulation, altered histone methylation pattern, heterochromatin loss, increased DNA damage and cell cycle alterations. Since the LMNA promoter contains a retinoic acid responsive element, we investigated if all-trans retinoic acid administration could lower progerin levels in cultured fibroblasts. We also evaluated the effect of associating rapamycin, which induces autophagic degradation of progerin and prelamin A. We demonstrate that all-trans retinoic acid acts synergistically with low-dosage rapamycin reducing progerin and prelamin A, via transcriptional downregulation associated with protein degradation, and increasing the lamin A to progerin ratio. These effects rescue cell dynamics and cellular proliferation through recovery of DNA damage response factor PARP1 and chromatin-associated nuclear envelope proteins LAP2α and BAF. The combined all-trans retinoic acid-rapamycin treatment is dramatically efficient, highly reproducible, represents a promising new approach in Hutchinson-Gilford Progeria therapy and deserves investigation in ageing-associated disorders.


BioMed Research International | 2014

Does Platelet-Rich Plasma Freeze-Thawing Influence Growth Factor Release and Their Effects on Chondrocytes and Synoviocytes?

Alice Roffi; Giuseppe Filardo; Elisa Assirelli; Carola Cavallo; Annarita Cenacchi; Andrea Facchini; Brunella Grigolo; Elizaveta Kon; Erminia Mariani; Loredana Pratelli; Lia Pulsatelli; Maurilio Marcacci

PRP cryopreservation remains a controversial point. Our purpose was to investigate the effect of freezing/thawing on PRP molecule release, and its effects on the metabolism of chondrocytes and synoviocytes. PRP was prepared from 10 volunteers, and a half volume underwent one freezing/thawing cycle. IL-1β, HGF, PDGF AB/BB, TGF-β1, and VEGF were assayed 1 hour and 7 days after activation. Culture media of chondrocytes and synoviocytes were supplemented with fresh or frozen PRP, and, at 7 days, proliferation, gene expression, and secreted proteins levels were evaluated. Results showed that in the freeze-thawed PRP the immediate and delayed molecule releases were similar or slightly lower than those in fresh PRP. TGF-β1 and PDGF AB/BB concentrations were significantly reduced after freezing both at 1 hour and at 7 days, whereas HGF concentration was significantly lower in frozen PRP at 7 days. In fresh PRP IL-1β and HGF concentrations underwent a significant further increase after 7 days. Similar gene expression was found in chondrocytes cultured with both PRPs, whereas in synoviocytes HGF gene expression was higher in frozen PRP. PRP cryopreservation is a safe procedure, which sufficiently preserves PRP quality and its ability to induce proliferation and the production of ECM components in chondrocytes and synoviocytes.


BioMed Research International | 2016

Platelet-Rich Plasma: The Choice of Activation Method Affects the Release of Bioactive Molecules

Carola Cavallo; Alice Roffi; Brunella Grigolo; Erminia Mariani; Loredana Pratelli; Giulia Merli; Elizaveta Kon; Maurilio Marcacci; Giuseppe Filardo

Platelet-Rich Plasma (PRP) is a low-cost procedure to deliver high concentrations of autologous growth factors (GFs). Platelet activation is a crucial step that might influence the availability of bioactive molecules and therefore tissue healing. Activation of PRP from ten voluntary healthy males was performed by adding 10% of CaCl2, 10% of autologous thrombin, 10% of a mixture of CaCl2 + thrombin, and 10% of collagen type I. Blood derivatives were incubated for 15 and 30 minutes and 1, 2, and 24 hours and samples were evaluated for the release of VEGF, TGF-β1, PDGF-AB, IL-1β, and TNF-α. PRP activated with CaCl2, thrombin, and CaCl2/thrombin formed clots detected from the 15-minute evaluation, whereas in collagen-type-I-activated samples no clot formation was noticed. Collagen type I produced an overall lower GF release. Thrombin, CaCl2/thrombin, and collagen type I activated PRPs showed an immediate release of PDGF and TGF-β 1 that remained stable over time, whereas VEGF showed an increasing trend from 15 minutes up to 24 hours. CaCl2 induced a progressive release of GFs from 15 minutes and increasing up to 24 hours. The method chosen to activate PRP influences both its physical form and the releasate in terms of GF amount and release kinetic.


Journal of Tissue Engineering and Regenerative Medicine | 2016

Specific inductive potential of a novel nanocomposite biomimetic biomaterial for osteochondral tissue regeneration

Cristina Manferdini; Carola Cavallo; Brunella Grigolo; Mauro Fiorini; Alessandro Nicoletti; Elena Gabusi; Nicoletta Zini; Daniele Pressato; Andrea Facchini; Gina Lisignoli

Osteochondral lesions require treatment to restore the biology and functionality of the joint. A novel nanostructured biomimetic gradient scaffold was developed to mimic the biochemical and biophysical properties of the different layers of native osteochondral structure. The present results show that the scaffold presents important physicochemical characteristics and can support the growth and differentiation of mesenchymal stromal cells (h‐MSCs), which adhere and penetrate into the cartilaginous and bony layers. H‐MSCs grown in chondrogenic or osteogenic medium decreased their proliferation during days 14–52 on both scaffold layers and in medium without inducing factors used as controls. Both chondrogenic and osteogenic differentiation of h‐MSCs occurred from day 28 and were increased on day 52, but not in the control medium. Safranin O staining and collagen type II and proteoglycans immunostaining confirmed that chondrogenic differentiation was specifically induced only in the cartilaginous layer. Conversely, von Kossa staining, osteocalcin and osteopontin immunostaining confirmed that osteogenic differentiation occurred on both layers. This study shows the specific potential of each layer of the biomimetic scaffold to induce chondrogenic or osteogenic differentiation of h‐MSCs. These processes depended mainly on the media used but not the biomaterial itself, suggesting that the local milieu is fundamental for guiding cell differentiation. Copyright


Microscopy Research and Technique | 2012

Ultrastructural analysis of human bone marrow mesenchymal stem cells during in vitro osteogenesis and chondrogenesis

Gabriella Teti; Carola Cavallo; Brunella Grigolo; Sandro Giannini; Andrea Facchini; Antonio Mazzotti; Mirella Falconi

The main purpose of this article was to describe the morphology of mesenchymal stem cells (MSCs) differentiated in vitro towards osteogenic and chondrogenic lineages and to focus on the ultrastructural features associated with these processes. Human mononuclear cells (hMNC) were isolated, expanded, and analyzed for the expression of specific cell surface markers to demonstrate their stem cell characteristics. Human mononuclear cells were differentiated in vitro in an osteogenic and in a chondrogenic sense for 7, 14, 21, and 28 days. Subsequently, they were processed using electron microscopic analysis (FEISEM). Alizarin red and alcian blue staining were carried out to demonstrate the deposition of mineral salts and proteoglycans in the extracellular matrix. Undifferentiated MSCs showed a cell surface covered by filopodia and ondulopodia. During differentiation, the MSCs changed their shape from a round to a fibroblastic‐like shape. At the end of the differentiation, several filaments with a parallel orientation in the osteogenic samples as well as a network organization in the chondrogenic samples were detected in the extracellular spaces. This study demonstrated that there are morphological features associated with the undifferentiated and differentiated states of the MSCs, which could be utilized as new parameters for identifying and classifying these cells. Microsc. Res. Tech., 2012.


Tissue Engineering Part C-methods | 2016

Autologous Bone Marrow Concentrate in a Sheep Model of Osteoarthritis: New Perspectives for Cartilage and Meniscus Repair.

G. Desando; Gianluca Giavaresi; Carola Cavallo; Isabella Bartolotti; Federica Sartoni; Nicolò Nicoli Aldini; Lucia Martini; Annapaola Parrilli; Erminia Mariani; Milena Fini; Brunella Grigolo

INTRODUCTION Cell-based therapies are becoming a valuable tool to treat osteoarthritis (OA). This study investigated and compared the regenerative potential of bone marrow concentrate (BMC) and mesenchymal stem cells (MSC), both engineered with Hyaff(®)-11 (HA) for OA treatment in a sheep model. METHODS OA was induced via unilateral medial meniscectomy. Bone marrow was aspirated from the iliac crest, followed by concentration processes or cell isolation and expansion to obtain BMC and MSC, respectively. Treatments consisted of autologous BMC and MSC seeded onto HA. The regenerative potential of bone, cartilage, menisci, and synovia was monitored using macroscopy, histology, immunohistochemistry, and micro-computed tomography at 12 weeks post-op. Data were analyzed using the general linear model with adjusted Sidaks multiple comparison and Spearmans tests. RESULTS BMC-HA treatment showed a greater repair ability in inhibiting OA progression compared to MSC-HA, leading to a reduction of inflammation in cartilage, meniscus, and synovium. Indeed, the decrease of inflammation positively contributed to counteract the progression of fibrotic and hypertrophic processes, known to be involved in tissue failure. Moreover, the treatment with BMC-HA showed the best results in allowing meniscus regeneration. Minor healing effects were noticed at bone level for both cell strategies; however, a downregulation of subchondral bone thickness (Cs.Th) was found in both cell treatments compared to the OA group in the femur. CONCLUSION The transplantation of BMC-HA provided the best effects in supporting regenerative processes in cartilage, meniscus, and synovium and at less extent in bone. On the whole, both MSC and BMC combined with HA reduced inflammation and contributed to switch off fibrotic and hypertrophic processes. The observed regenerative potential by BMC-HA on meniscus could open new perspectives, suggesting its use not only for OA care but also for the treatment of meniscal lesions, even if further analyses are necessary to confirm its healing potential at long-term follow-up.

Collaboration


Dive into the Carola Cavallo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge