Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carola G. Vinuesa is active.

Publication


Featured researches published by Carola G. Vinuesa.


Immunity | 2009

The Transcriptional Repressor Bcl-6 Directs T Follicular Helper Cell Lineage Commitment

Di Yu; Sudha Rao; Louis M. Tsai; Sau K. Lee; Yiqing He; Elissa L. Sutcliffe; Monika Srivastava; Michelle A. Linterman; Lei Zheng; Nicholas Simpson; Julia I. Ellyard; Ian A. Parish; Cindy S. Ma; Qi-Jing Li; Christopher R. Parish; Charles R. Mackay; Carola G. Vinuesa

Follicular helper T (Tfh) cells provide selection signals to germinal center B cells, which is essential for long-lived antibody responses. High CXCR5 and low CCR7 expression facilitates their homing to B cell follicles and distinguishes them from T helper 1 (Th1), Th2, and Th17 cells. Here, we showed that Bcl-6 directs Tfh cell differentiation: Bcl-6-deficient T cells failed to develop into Tfh cells and could not sustain germinal center responses, whereas forced expression of Bcl-6 in CD4(+) T cells promoted expression of the hallmark Tfh cell molecules CXCR5, CXCR4, and PD-1. Bcl-6 bound to the promoters of the Th1 and Th17 cell transcriptional regulators T-bet and RORgammat and repressed IFN-gamma and IL-17 production. Bcl-6 also repressed expression of many microRNAs (miRNAs) predicted to control the Tfh cell signature, including miR-17-92, which repressed CXCR5 expression. Thus, Bcl-6 positively directs Tfh cell differentiation, through combined repression of miRNAs and transcription factors.


Nature | 2005

A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity

Carola G. Vinuesa; Matthew C. Cook; Constanza Angelucci; Vicki Athanasopoulos; Lixin Rui; Kim M. Hill; Di Yu; Heather Domaschenz; Belinda Whittle; Teresa Lambe; Ian S. Roberts; Richard R. Copley; John I. Bell; Richard J. Cornall; Christopher C. Goodnow

Despite the sequencing of the human and mouse genomes, few genetic mechanisms for protecting against autoimmune disease are currently known. Here we systematically screen the mouse genome for autoimmune regulators to isolate a mouse strain, sanroque, with severe autoimmune disease resulting from a single recessive defect in a previously unknown mechanism for repressing antibody responses to self. The sanroque mutation acts within mature T cells to cause formation of excessive numbers of follicular helper T cells and germinal centres. The mutation disrupts a repressor of ICOS, an essential co-stimulatory receptor for follicular T cells, and results in excessive production of the cytokine interleukin-21. sanroque mice fail to repress diabetes-causing T cells, and develop high titres of autoantibodies and a pattern of pathology consistent with lupus. The causative mutation is in a gene of previously unknown function, roquin (Rc3h1), which encodes a highly conserved member of the RING-type ubiquitin ligase protein family. The Roquin protein is distinguished by the presence of a CCCH zinc-finger found in RNA-binding proteins, and localization to cytosolic RNA granules implicated in regulating messenger RNA translation and stability.


Nature Medicine | 2011

Foxp3+ follicular regulatory T cells control the germinal center response

Michelle A. Linterman; Wim Pierson; Sau K. Lee; Axel Kallies; Shimpei Kawamoto; Tim F. Rayner; Monika Srivastava; Devina P. Divekar; Laura L. Beaton; Jennifer J. Hogan; Sidonia Fagarasan; Adrian Liston; Kenneth G C Smith; Carola G. Vinuesa

Follicular helper (TFH) cells provide crucial signals to germinal center B cells undergoing somatic hypermutation and selection that results in affinity maturation. Tight control of TFH numbers maintains self tolerance. We describe a population of Foxp3+Blimp-1+CD4+ T cells constituting 10–25% of the CXCR5highPD-1highCD4+ T cells found in the germinal center after immunization with protein antigens. These follicular regulatory T (TFR) cells share phenotypic characteristics with TFH and conventional Foxp3+ regulatory T (Treg) cells yet are distinct from both. Similar to TFH cells, TFR cell development depends on Bcl-6, SLAM-associated protein (SAP), CD28 and B cells; however, TFR cells originate from thymic-derived Foxp3+ precursors, not naive or TFH cells. TFR cells are suppressive in vitro and limit TFH cell and germinal center B cell numbers in vivo. In the absence of TFR cells, an outgrowth of non–antigen-specific B cells in germinal centers leads to fewer antigen-specific cells. Thus, the TFH differentiation pathway is co-opted by Treg cells to control the germinal center response.


Nature | 2005

Cellular and genetic mechanisms of self tolerance and autoimmunity

Christopher C. Goodnow; Jonathon Sprent; Barbara Fazekas de St Groth; Carola G. Vinuesa

The mammalian immune system has an extraordinary potential for making receptors that sense and neutralize any chemical entity entering the body. Inevitably, some of these receptors recognize components of our own body, and so cellular mechanisms have evolved to control the activity of these ‘forbidden’ receptors and achieve immunological self tolerance. Many of the genes and proteins involved are conserved between humans and other mammals. This provides the bridge between clinical studies and mechanisms defined in experimental animals to understand how sets of gene products coordinate self-tolerance mechanisms and how defects in these controls lead to autoimmune disease.


Journal of Experimental Medicine | 2010

IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses

Michelle A. Linterman; Laura L. Beaton; Di Yu; Roybel R. Ramiscal; Monika Srivastava; Jennifer J. Hogan; Naresh K. Verma; Mark J. Smyth; Robert J. Rigby; Carola G. Vinuesa

During T cell–dependent responses, B cells can either differentiate extrafollicularly into short-lived plasma cells or enter follicles to form germinal centers (GCs). Interactions with T follicular helper (Tfh) cells are required for GC formation and for selection of somatically mutated GC B cells. Interleukin (IL)-21 has been reported to play a role in Tfh cell formation and in B cell growth, survival, and isotype switching. To date, it is unclear whether the effect of IL-21 on GC formation is predominantly a consequence of this cytokine acting directly on the Tfh cells or if IL-21 directly influences GC B cells. We show that IL-21 acts in a B cell–intrinsic fashion to control GC B cell formation. Mixed bone marrow chimeras identified a significant B cell–autonomous effect of IL-21 receptor (R) signaling throughout all stages of the GC response. IL-21 deficiency profoundly impaired affinity maturation and reduced the proportion of IgG1+ GC B cells but did not affect formation of early memory B cells. IL-21R was required on GC B cells for maximal expression of Bcl-6. In contrast to the requirement for IL-21 in the follicular response to sheep red blood cells, a purely extrafollicular antibody response to Salmonella dominated by IgG2a was intact in the absence of IL-21.


Nature Reviews Immunology | 2005

Follicular B helper T cells in antibody responses and autoimmunity

Carola G. Vinuesa; Stuart G. Tangye; Bernhard Moser; Charles R. Mackay

T-cell help for B cells is essential for high-affinity antibody responses and B-cell memory. Recently, the identity of a discrete follicular population of T cells that has a crucial role in this process has become clearer. Similar to primed CD4+ T cells in the tonsils and memory CD4+ T cells in the peripheral blood, this follicular population of T cells expresses CXC-chemokine receptor 5 (CXCR5). Owing to their distinct homing preferences and helper function, these T cells differ from T helper 1 and T helper 2 cells and have been denoted follicular B helper T cells. Here, we outline the central role of this subset in normal and pathological immune responses.


Nature | 2008

Two levels of protection for the B cell genome during somatic hypermutation.

Man Liu; Jamie L. Duke; Daniel J. Richter; Carola G. Vinuesa; Christopher C. Goodnow; Steven H. Kleinstein; David G. Schatz

Somatic hypermutation introduces point mutations into immunoglobulin genes in germinal centre B cells during an immune response. The reaction is initiated by cytosine deamination by the activation-induced deaminase (AID) and completed by error-prone processing of the resulting uracils by mismatch and base excision repair factors. Somatic hypermutation represents a threat to genome integrity and it is not known how the B cell genome is protected from the mutagenic effects of somatic hypermutation nor how often these protective mechanisms fail. Here we show, by extensive sequencing of murine B cell genes, that the genome is protected by two distinct mechanisms: selective targeting of AID and gene-specific, high-fidelity repair of AID-generated uracils. Numerous genes linked to B cell tumorigenesis, including Myc, Pim1, Pax5, Ocab (also called Pou2af1), H2afx, Rhoh and Ebf1, are deaminated by AID but escape acquisition of most mutations through the combined action of mismatch and base excision repair. However, approximately 25% of expressed genes analysed were not fully protected by either mechanism and accumulated mutations in germinal centre B cells. Our results demonstrate that AID acts broadly on the genome, with the ultimate distribution of mutations determined by a balance between high-fidelity and error-prone DNA repair.


Immunological Reviews | 2003

Extrafollicular antibody responses

Ian C. M. MacLennan; Kai-Michael Toellner; Adam F. Cunningham; Karine Serre; Daniel M.-Y. Sze; Elina Zuniga; Matthew C. Cook; Carola G. Vinuesa

Summary:  In adaptive antibody responses, B cells are induced to grow either in follicles where they form germinal centers or in extrafollicular foci as plasmablasts. Extrafollicular growth typically occurs in the medullary cords of lymph nodes and in foci in the red pulp of the spleen. It is not a feature of secondary lymphoid tissue associated with the internal epithelia of the body. All types of naïve and memory B cells can be recruited into extrafollicular responses. These responses are associated with immunoglobulin class switching but, at the most, only low‐level hypermutation.


Journal of Experimental Medicine | 2009

Follicular helper T cells are required for systemic autoimmunity

Michelle A. Linterman; Robert J. Rigby; Raphael Wong; Di Yu; Robert Brink; Jennifer L. Cannons; Pamela L. Schwartzberg; Matthew C. Cook; Giles Walters; Carola G. Vinuesa

Production of high-affinity pathogenic autoantibodies appears to be central to the pathogenesis of lupus. Because normal high-affinity antibodies arise from germinal centers (GCs), aberrant selection of GC B cells, caused by either failure of negative selection or enhanced positive selection by follicular helper T (TFH) cells, is a plausible explanation for these autoantibodies. Mice homozygous for the san allele of Roquin, which encodes a RING-type ubiquitin ligase, develop GCs in the absence of foreign antigen, excessive TFH cell numbers, and features of lupus. We postulated a positive selection defect in GCs to account for autoantibodies. We first demonstrate that autoimmunity in Roquinsan/san (sanroque) mice is GC dependent: deletion of one allele of Bcl6 specifically reduces the number of GC cells, ameliorating pathology. We show that Roquinsan acts autonomously to cause accumulation of TFH cells. Introduction of a null allele of the signaling lymphocyte activation molecule family adaptor Sap into the sanroque background resulted in a substantial and selective reduction in sanroque TFH cells, and abrogated formation of GCs, autoantibody formation, and renal pathology. In contrast, adoptive transfer of sanroque TFH cells led to spontaneous GC formation. These findings identify TFH dysfunction within GCs and aberrant positive selection as a pathway to systemic autoimmunity.


Arthritis & Rheumatism | 2010

Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus.

Nicholas Simpson; Paul Gatenby; Anastasia Wilson; Shreya Malik; David A. Fulcher; Stuart G. Tangye; Harinder Manku; Timothy J. Vyse; Giovanna Roncador; Gavin A. Huttley; Christopher C. Goodnow; Carola G. Vinuesa; Matthew C. Cook

OBJECTIVE In the sanroque mouse model of lupus, pathologic germinal centers (GCs) arise due to increased numbers of follicular helper T (Tfh) cells, resulting in high-affinity anti-double-stranded DNA antibodies that cause end-organ inflammation, such as glomerulonephritis. The purpose of this study was to examine the hypothesis that this pathway could account for a subset of patients with systemic lupus erythematosus (SLE). METHODS An expansion of Tfh cells is a causal, and therefore consistent, component of the sanroque mouse phenotype. We validated the enumeration of circulating T cells resembling Tfh cells as a biomarker of this expansion in sanroque mice, and we performed a comprehensive comparison of the surface phenotype of circulating and tonsillar Tfh cells in humans. This circulating biomarker was enumerated in SLE patients (n = 46), Sjögrens syndrome patients (n = 17), and healthy controls (n = 48) and was correlated with disease activity and end-organ involvement. RESULTS In sanroque mice, circulating Tfh cells increased in proportion to their GC counterparts, making circulating Tfh cells a feasible human biomarker of this novel mechanism of breakdown in GC tolerance. In a subset of SLE patients (14 of 46), but in none of the controls, the levels of circulating Tfh cells (defined as circulating CXCR5+CD4+ cells with high expression of Tfh-associated molecules, such as inducible T cell costimulator or programmed death 1) were increased. This cellular phenotype did not vary with time, disease activity, or treatment, but it did correlate with the diversity and titers of autoantibodies and with the severity of end-organ involvement. CONCLUSION These findings in SLE patients are consistent with the autoimmune mechanism in sanroque mice and identify Tfh effector molecules as possible therapeutic targets in a recognizable subset of patients with SLE.

Collaboration


Dive into the Carola G. Vinuesa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew C. Cook

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Brink

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sau K. Lee

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Stuart G. Tangye

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Vicki Athanasopoulos

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Alvin Pratama

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Julia I. Ellyard

Australian National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge