Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Brink is active.

Publication


Featured researches published by Robert Brink.


Nature | 1988

Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice

Christopher C. Goodnow; Jeffrey Crosbie; Stephen Adelstein; Thomas B. Lavoie; Sandra J. Smith-Gill; Robert Brink; Helen Pritchard-Briscoe; John S. Wotherspoon; Robert Loblay; Kathy Raphael; Ronald J. Trent; Antony Basten

Immunological tolerance has been demonstrated in double-transgenic mice expressing the genes for a neo-self antigen, hen egg lysozyme, and a high affinity anti-lysozyme antibody. The majority of anti-lysozyme B-cells did not undergo clonal deletion, but were no longer able to secrete anti-lysozyme antibody and displayed markedly reduced levels of surface IgM while continuing to express high levels of surface IgD. These findings indicate that self tolerance may result from mechanisms other than clonal deletion, and are consistent with the hypothesis that IgD may have a unique role in B-cell tolerance.


Nature | 1989

Induction of self-tolerance in mature peripheral B lymphocytes

Christopher C. Goodnow; Jeffrey Crosbie; Helle F. Jørgensen; Robert Brink; Antony Basten

In transgenic mice, mature peripheral B lymphocytes in lymphoid follicles, like immature B cells, are rendered tolerant by encounter with self-antigen, provided receptor occupancy by self-antigen exceeds a critical threshold. The tolerant state of the B cell is closely correlated with down-regulation of membrane IgM but not IgD antigen-receptors. Identical changes in antigen-receptor expression occur in a subset of follicular B cells in nontransgenic mice, suggesting that clonally silenced self-reactive cells are common in the peripheral B-cell repertoire.


Journal of Experimental Medicine | 2009

Follicular helper T cells are required for systemic autoimmunity

Michelle A. Linterman; Robert J. Rigby; Raphael Wong; Di Yu; Robert Brink; Jennifer L. Cannons; Pamela L. Schwartzberg; Matthew C. Cook; Giles Walters; Carola G. Vinuesa

Production of high-affinity pathogenic autoantibodies appears to be central to the pathogenesis of lupus. Because normal high-affinity antibodies arise from germinal centers (GCs), aberrant selection of GC B cells, caused by either failure of negative selection or enhanced positive selection by follicular helper T (TFH) cells, is a plausible explanation for these autoantibodies. Mice homozygous for the san allele of Roquin, which encodes a RING-type ubiquitin ligase, develop GCs in the absence of foreign antigen, excessive TFH cell numbers, and features of lupus. We postulated a positive selection defect in GCs to account for autoantibodies. We first demonstrate that autoimmunity in Roquinsan/san (sanroque) mice is GC dependent: deletion of one allele of Bcl6 specifically reduces the number of GC cells, ameliorating pathology. We show that Roquinsan acts autonomously to cause accumulation of TFH cells. Introduction of a null allele of the signaling lymphocyte activation molecule family adaptor Sap into the sanroque background resulted in a substantial and selective reduction in sanroque TFH cells, and abrogated formation of GCs, autoantibody formation, and renal pathology. In contrast, adoptive transfer of sanroque TFH cells led to spontaneous GC formation. These findings identify TFH dysfunction within GCs and aberrant positive selection as a pathway to systemic autoimmunity.


Journal of Clinical Investigation | 2004

BAFF selectively enhances the survival of plasmablasts generated from human memory B cells

Danielle T. Avery; Susan L. Kalled; Julia I. Ellyard; Christine Ambrose; Sarah A. Bixler; Marilyn Thien; Robert Brink; Fabienne Mackay; Philip D. Hodgkin; Stuart G. Tangye

The generation of Ig-secreting cells (ISCs) from memory B cells requires interactions between antigen-specific (Ag-specific) B cells, T cells, and dendritic cells. This process must be strictly regulated to ensure sufficient humoral immunity while avoiding production of pathogenic autoantibodies. BAFF, a member of the TNF family, is a key regulator of B cell homeostasis. BAFF exerts its effect by binding to three receptors - transmembrane activator of and CAML interactor (TACI), B cell maturation antigen (BCMA), and BAFF receptor (BAFF-R). To elucidate the contribution of BAFF to the differentiation of B cells into ISCs, we tracked the fate of human memory B cells stimulated with BAFF or CD40L. BAFF and CD40L significantly increased the overall number of surviving B cells. This was achieved via distinct mechanisms. CD40L induced proliferation of nondifferentiated blasts, while BAFF prevented apoptosis of ISCs without enhancing proliferation. The altered responsiveness of activated memory B cells to CD40L and BAFF correlated with changes in surface phenotype such that expression of CD40 and BAFF-R were reduced on ISCs while BCMA was induced. These results suggest BAFF may enhance humoral immunity in vivo by promoting survival of ISCs via a BCMA-dependent mechanism. These findings have wide-ranging implications for the treatment of human immunodeficiencies as well as autoimmune diseases.


Journal of Experimental Medicine | 2006

Antigen recognition strength regulates the choice between extrafollicular plasma cell and germinal center B cell differentiation

Didrik Paus; Tri Giang Phan; Tyani D. Chan; Sandra Gardam; Antony Basten; Robert Brink

B cells responding to T-dependent antigen either differentiate rapidly into extrafollicular plasma cells or enter germinal centers and undergo somatic hypermutation and affinity maturation. However, the physiological cues that direct B cell differentiation down one pathway versus the other are unknown. Here we show that the strength of the initial interaction between B cell receptor (BCR) and antigen is a primary determinant of this decision. B cells expressing a defined BCR specificity for hen egg lysozyme (HEL) were challenged with sheep red blood cell conjugates of a series of recombinant mutant HEL proteins engineered to bind this BCR over a 10,000-fold affinity range. Decreasing either initial BCR affinity or antigen density was found to selectively remove the extrafollicular plasma cell response but leave the germinal center response intact. Moreover, analysis of competing B cells revealed that high affinity specificities are more prevalent in the extrafollicular plasma cell versus the germinal center B cell response. Thus, the effectiveness of early T-dependent antibody responses is optimized by preferentially steering B cells reactive against either high affinity or abundant epitopes toward extrafollicular plasma cell differentiation. Conversely, responding clones with weaker antigen reactivity are primarily directed to germinal centers where they undergo affinity maturation.


Nature Reviews Immunology | 2013

The good, the bad and the ugly - TFH cells in human health and disease.

Stuart G. Tangye; Cindy S. Ma; Robert Brink; Elissa K. Deenick

Antibody production is an important feature of the vertebrate immune system. Antibodies neutralize and clear pathogens, thereby protecting against infectious diseases. Such humoral immunity has great longevity, often persisting for the hosts lifetime. Long-lived humoral immunity depends on help provided by CD4+ T cells, namely T follicular helper (TFH) cells, which support the differentiation of antigen-specific B cells into memory and plasma cells. TFH cells are stringently regulated, as aberrant TFH cell activity is involved in immunopathologies such as autoimmunity, immunodeficiencies and lymphomas. The elucidation of the mechanisms that regulate TFH cell differentiation, function and fate should highlight targets for novel therapeutics.


Nature Immunology | 2010

Control systems and decision making for antibody production

Christopher C. Goodnow; Carola G. Vinuesa; Katrina L. Randall; Fabienne Mackay; Robert Brink

This paper synthesizes recent progress toward understanding the integrated control systems and fail-safes that guide the quality and quantity of antibody produced by B cells. We focus on four key decisions: (1) the choice between proliferation or death in perifollicular B cells in the first 3 days after antigen encounter; (2) differentiation of proliferating perifollicular B cells into extrafollicular plasma cells or germinal center B cells; (3) positive selection of B cell antigen receptor (BCR) affinity for foreign antigen versus negative selection of BCR affinity for self antigen in germinal center B cells; and (4) survival versus death of antibody-secreting plasma cells. Understanding the engineering of these control systems represents a challenging future step for treating disorders of antibody production in autoimmunity, allergy and immunodeficiency.


Immunity | 2013

Circulating Precursor CCR7loPD-1hi CXCR5+ CD4+ T Cells Indicate Tfh Cell Activity and Promote Antibody Responses upon Antigen Reexposure

Jing He; Louis M Tsai; Yew Ann Leong; Xin Jack Hu; Cindy S. Ma; Nina Chevalier; Xiaolin Sun; Kirsten Vandenberg; Steve Rockman; Yan Ding; Lei Zhu; Wei Wei; Changqi Wang; Alexander Karnowski; Gabrielle T. Belz; Joanna R. Ghali; Matthew C. Cook; Sean Riminton; André Veillette; Pamela L. Schwartzberg; Fabienne Mackay; Robert Brink; Stuart G. Tangye; Carola G. Vinuesa; Charles R. Mackay; Zhan Guo Li; Di Yu

Follicular B helper T (Tfh) cells support high affinity and long-term antibody responses. Here we found that within circulating CXCR5⁺ CD4⁺ T cells in humans and mice, the CCR7(lo)PD-1(hi) subset has a partial Tfh effector phenotype, whereas CCR7(hi)PD-1(lo) cells have a resting phenotype. The circulating CCR7(lo)PD-1(hi) subset was indicative of active Tfh differentiation in lymphoid organs and correlated with clinical indices in autoimmune diseases. Thus the CCR7(lo)PD-1(hi) subset provides a biomarker to monitor protective antibody responses during infection or vaccination and pathogenic antibody responses in autoimmune diseases. Differentiation of both CCR7(hi)PD-1(lo) and CCR7(lo)PD-1(hi) subsets required ICOS and BCL6, but not SAP, suggesting that circulating CXCR5⁺ helper T cells are primarily generated before germinal centers. Upon antigen reencounter, CCR7(lo)PD-1(hi) CXCR5⁺ precursors rapidly differentiate into mature Tfh cells to promote antibody responses. Therefore, circulating CCR7(lo)PD-1(hi) CXCR5⁺ CD4⁺ T cells are generated during active Tfh differentiation and represent a new mechanism of immunological early memory.


Journal of Experimental Medicine | 2010

B cell-intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans.

Danielle T. Avery; Elissa K. Deenick; Cindy S. Ma; Santi Suryani; Nicholas Simpson; Gary Y. Chew; Tyani D. Chan; Umamainthan Palendira; Jacinta Bustamante; Stéphanie Boisson-Dupuis; Sharon Choo; Karl E. Bleasel; Jane Peake; Cecile King; Martyn A. French; Dan Engelhard; Sami Al-Hajjar; Saleh Al-Muhsen; Klaus Magdorf; Joachim Roesler; Peter D. Arkwright; Pravin Hissaria; D. Sean Riminton; Melanie Wong; Robert Brink; David A. Fulcher; Jean-Laurent Casanova; Matthew C. Cook; Stuart G. Tangye

Engagement of cytokine receptors by specific ligands activate Janus kinase–signal transducer and activator of transcription (STAT) signaling pathways. The exact roles of STATs in human lymphocyte behavior remain incompletely defined. Interleukin (IL)-21 activates STAT1 and STAT3 and has emerged as a potent regulator of B cell differentiation. We have studied patients with inactivating mutations in STAT1 or STAT3 to dissect their contribution to B cell function in vivo and in response to IL-21 in vitro. STAT3 mutations dramatically reduced the number of functional, antigen (Ag)-specific memory B cells and abolished the ability of IL-21 to induce naive B cells to differentiate into plasma cells (PCs). This resulted from impaired activation of the molecular machinery required for PC generation. In contrast, STAT1 deficiency had no effect on memory B cell formation in vivo or IL-21–induced immunoglobulin secretion in vitro. Thus, STAT3 plays a critical role in generating effector B cells from naive precursors in humans. STAT3-activating cytokines such as IL-21 thus underpin Ag-specific humoral immune responses and provide a mechanism for the functional antibody deficit in STAT3-deficient patients.


Journal of Experimental Medicine | 2006

High affinity germinal center B cells are actively selected into the plasma cell compartment

Tri Giang Phan; Didrik Paus; Tyani D. Chan; Marian L. Turner; Stephen L. Nutt; Antony Basten; Robert Brink

A hallmark of T cell–dependent immune responses is the progressive increase in the ability of serum antibodies to bind antigen and provide immune protection. Affinity maturation of the antibody response is thought to be connected with the preferential survival of germinal centre (GC) B cells that have acquired increased affinity for antigen via somatic hypermutation of their immunoglobulin genes. However, the mechanisms that drive affinity maturation remain obscure because of the difficulty in tracking the affinity-based selection of GC B cells and their differentiation into plasma cells. We describe a powerful new model that allows these processes to be followed as they occur in vivo. In contrast to evidence from in vitro systems, responding GC B cells do not undergo plasma cell differentiation stochastically. Rather, only GC B cells that have acquired high affinity for the immunizing antigen form plasma cells. Affinity maturation is therefore driven by a tightly controlled mechanism that ensures only antibodies with the greatest possibility of neutralizing foreign antigen are produced. Because the body can sustain only limited numbers of plasma cells, this “quality control” over plasma cell differentiation is likely critical for establishing effective humoral immunity.

Collaboration


Dive into the Robert Brink's collaboration.

Top Co-Authors

Avatar

Antony Basten

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Stuart G. Tangye

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Tri Giang Phan

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Tyani D. Chan

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Sandra Gardam

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Carola G. Vinuesa

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cindy S. Ma

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jana R. Hermes

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge