Carole A. Farah
Montreal Neurological Institute and Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carole A. Farah.
Journal of Neurochemistry | 2009
Joanna K. Bougie; Travis Lim; Carole A. Farah; Varsha Manjunath; Ikue Nagakura; Gino B. Ferraro; Wayne S. Sossin
In vertebrates, a brain‐specific transcript from the atypical protein kinase C (PKC) ζ gene encodes protein kinase M (PKM) ζ, a constitutively active kinase implicated in the maintenance of synaptic plasticity and memory. We have cloned the atypical PKC from Aplysia, PKC Apl III. We did not find a transcript in Aplysia encoding PKMζ, and evolutionary analysis of atypical PKCs suggests formation of this transcript is restricted to vertebrates. Instead, over‐expression of PKC Apl III in Aplysia sensory neurons leads to production of a PKM fragment of PKC Apl III. This cleavage was induced by calcium and blocked by calpain inhibitors. Moreover, nervous system enriched spliced forms of PKC Apl III show enhanced cleavage. PKC Apl III could also be activated through phosphorylation downstream of phosphoinositide 3‐kinase. We suggest that PKM forms of atypical PKCs play a conserved role in memory formation, but the mechanism of formation of these kinases has changed over evolution.
Neural Plasticity | 2012
Faisal Naqib; Wayne S. Sossin; Carole A. Farah
Long-term memory formation is sensitive to the pattern of training sessions. Training distributed over time (spaced training) is superior at generating long-term memories than training presented with little or no rest interval (massed training). This spacing effect was observed in a range of organisms from invertebrates to humans. In the present paper, we discuss the evidence supporting cyclic-AMP response element-binding protein 2 (CREB), a transcription factor, as being an important molecule mediating long-term memory formation after spaced training. We also review the main upstream proteins that regulate CREB in different model organisms. Those include the eukaryotic translation initiation factor (eIF2α), protein phosphatase I (PP1), mitogen-activated protein kinase (MAPK), and the protein tyrosine phosphatase corkscrew. Finally, we discuss PKC activation and protein synthesis and degradation as mechanisms by which neurons decode the spacing intervals.
The Journal of Neuroscience | 2009
Carole A. Farah; Daniel B. Weatherill; Tyler W. Dunn; Wayne S. Sossin
Learning is highly regulated by the pattern of training. In Aplysia, an important organism for the development of cellular and molecular models of learning, spaced versus massed application of the same stimulus leads to different forms of memory. A critical molecular step underlying memory is the serotonin (5HT)-mediated activation of the novel PKC Apl II. Here, we demonstrate that activation of PKC Apl II is highly sensitive to the pattern of 5HT application. Spaced applications downregulate PKC translocation through PKA signaling, whereas massed applications lead to persistent translocation of PKC. Differential regulation of PKC translocation is mediated by competing feedback mechanisms that act through protein synthesis. These studies elucidate a fundamental molecular difference between spaced and massed training protocols.
The Journal of Neuroscience | 2012
Joanna K. Bougie; Diancai Cai; Margaret H. Hastings; Carole A. Farah; Shanping Chen; Xiaotang Fan; Patrick K. McCamphill; David L. Glanzman; Wayne S. Sossin
A constitutively active kinase, known as protein kinase Mζ (PKMζ), is proposed to act as a long-lasting molecular memory trace. While PKMζ is formed in rodents through translation of a transcript initiating in an intron of the protein kinase Cζ (PKCζ) gene, this transcript does not exist in Aplysia californica despite the fact that inhibitors of PKMζ erase memory in Aplysia in a fashion similar to rodents. We have previously shown that, in Aplysia, the ortholog of PKCζ, PKC Apl III, is cleaved by calpain to form a PKM after overexpression of PKC Apl III. We now show that kinase activity is required for this cleavage. We further use a FRET reporter to measure cleavage of PKC Apl III into PKM Apl III in live neurons using a stimulus that induces plasticity. Our results show that a 10 min application of serotonin induces cleavage of PKC Apl III in motor neuron processes in a calpain- and protein synthesis-dependent manner, but does not induce cleavage of PKC Apl III in sensory neuron processes. Furthermore, a dominant-negative PKM Apl III expressed in the motor neuron blocked the late phase of intermediate-term facilitation in sensory-motor neuron cocultures induced by 10 min of serotonin. In summary, we provide evidence that PKC Apl III is cleaved into PKM Apl III during memory formation, that the requirements for cleavage are the same as the requirements for the plasticity, and that PKM in the motor neuron is required for intermediate-term facilitation.
Advances in Experimental Medicine and Biology | 2012
Carole A. Farah; Wayne S. Sossin
More than two decades ago, the discovery of the first C2 domain in conventional Protein Kinase Cs (cPKCs) and of its role as a calcium-binding motif began to shed light on the activation mechanism of this family of Serine/Threonine kinases which are involved in several critical signal transduction pathways. In this chapter, we review the current knowledge of the structure and the function of the different C2 domains in PKCs. The C2 domain of cPKCs is a calcium sensor and its calcium-dependent binding to phospholipids is crucial for kinase activation. While the functional role of the cPKC C2 domain is better understood, phylogenetic analysis revealed that the novel C2 domain is more ancient and related to the C2 domain in the fungal PKC family, while the cPKC C2 domain is first associated with PKC in metazoans. The C2 domain of novel PKCs (nPKCs) does not contain a calcium-binding motif but still plays a critical role in nPKCs activation by regulating C1-C2 domain interactions and consequently C2 domain-mediated inhibition in both the nPKCs of the epsilon family and the nPKCs of the delta family. Moreover, the C2 domain of the nPKCs of the delta family was shown to recognize phosphotyrosines in a novel mode different from the ones observed for the Src Homology 2 (SH2) and the phosphotyrosine binding domains (PTB). By binding to phosphotyrosines, the C2 domain regulates the activation of this subclass of PKCs. The C2 domain was also shown to be involved in protein-protein interactions and binding to the receptor for activated C-kinase (RACKs) thus contributing to the subcellular localization of PKCs. In summary, the C2 domain is a critical player that can sense the activated signaling pathway in response to external stimuli to specifically regulate the different conventional and novel PKC isoforms.
Molecular and Cellular Biology | 2008
Carole A. Farah; Ikue Nagakura; Daniel B. Weatherill; Xiaotang Fan; Wayne S. Sossin
ABSTRACT In Aplysia californica, the serotonin-mediated translocation of protein kinase C (PKC) Apl II to neuronal membranes is important for synaptic plasticity. The orthologue of PKC Apl II, PKCε, has been reported to require phosphatidic acid (PA) in conjunction with diacylglycerol (DAG) for translocation. We find that PKC Apl II can be synergistically translocated to membranes by the combination of DAG and PA. We identify a mutation in the C1b domain (arginine 273 to histidine; PKC Apl II-R273H) that removes the effects of exogenous PA. In Aplysia neurons, the inhibition of endogenous PA production by 1-butanol inhibited the physiological translocation of PKC Apl II by serotonin in the cell body and at the synapse but not the translocation of PKC Apl II-R273H. The translocation of PKC Apl II-R273H in the absence of PA was explained by two additional effects of this mutation: (i) the mutation removed C2 domain-mediated inhibition, and (ii) the mutation decreased the concentration of DAG required for PKC Apl II translocation. We present a model in which, under physiological conditions, PA is important to activate the novel PKC Apl II both by synergizing with DAG and removing C2 domain-mediated inhibition.
Journal of Neurochemistry | 2010
Ikue Nagakura; Tyler W. Dunn; Carole A. Farah; Andrew Heppner; Flora F. Li; Wayne S. Sossin
J. Neurochem. (2010) 115, 994–1006.
The Journal of Neuroscience | 2015
Patrick K. McCamphill; Carole A. Farah; Mina N. Anadolu; Sanjida Hoque; Wayne S. Sossin
At the sensory-motor neuron synapse of Aplysia, either spaced or continuous (massed) exposure to serotonin (5-HT) induces a form of intermediate-term facilitation (ITF) that requires new protein synthesis but not gene transcription. However, spaced and massed ITF use distinct molecular mechanisms to maintain increased synaptic strength. Synapses activated by spaced applications of 5-HT generate an ITF that depends on persistent protein kinase A (PKA) activity, whereas an ITF produced by massed 5-HT depends on persistent protein kinase C (PKC) activity. In this study, we demonstrate that eukaryotic elongation factor 2 (eEF2), which catalyzes the GTP-dependent translocation of the ribosome during protein synthesis, acts as a biochemical sensor that is tuned to the pattern of neuronal stimulation. Specifically, we find that massed training leads to a PKC-dependent increase in phosphorylation of eEF2, whereas spaced training results in a PKA-dependent decrease in phosphorylation of eEF2. Importantly, by using either pharmacological or dominant-negative strategies to inhibit eEF2 kinase (eEF2K), we were able to block massed 5-HT-dependent increases in eEF2 phosphorylation and subsequent PKC-dependent ITF. In contrast, pharmacological inhibition of eEF2K during the longer period of time required for spaced training was sufficient to reduce eEF2 phosphorylation and induce ITF. Finally, we find that the massed 5-HT-dependent increase in synaptic strength requires translation elongation, but not translation initiation, whereas the spaced 5-HT-dependent increase in synaptic strength is partially dependent on translation initiation. Thus, bidirectional regulation of eEF2 is critical for decoding distinct activity patterns at synapses by activating distinct modes of translation regulation.
PLOS Computational Biology | 2011
Faisal Naqib; Carole A. Farah; Christopher C. Pack; Wayne S. Sossin
The sensory-motor neuron synapse of Aplysia is an excellent model system for investigating the biochemical changes underlying memory formation. In this system, training that is separated by rest periods (spaced training) leads to persistent changes in synaptic strength that depend on biochemical pathways that are different from those that occur when the training lacks rest periods (massed training). Recently, we have shown that in isolated sensory neurons, applications of serotonin, the neurotransmitter implicated in inducing these synaptic changes during memory formation, lead to desensitization of the PKC Apl II response, in a manner that depends on the method of application (spaced versus massed). Here, we develop a mathematical model of this response in order to gain insight into how neurons sense these different training protocols. The model was developed incrementally, and each component was experimentally validated, leading to two novel findings: First, the increased desensitization due to PKA-mediated heterologous desensitization is coupled to a faster recovery than the homologous desensitization that occurs in the absence of PKA activity. Second, the model suggests that increased spacing leads to greater desensitization due to the short half-life of a hypothetical protein, whose production prevents homologous desensitization. Thus, we predict that the effects of differential spacing are largely driven by the rates of production and degradation of proteins. This prediction suggests a powerful mechanism by which information about time is incorporated into neuronal processing.
Journal of Neurophysiology | 2012
Tyler W. Dunn; Carole A. Farah; Wayne S. Sossin
Expression of the 5-HT(1Apl(a)) receptor in Aplysia pleural sensory neurons inhibited 5-HT-mediated translocation of the novel PKC Apl II in sensory neurons and prevented PKC-dependent synaptic facilitation at sensory to motoneuron synapses (Nagakura et al. 2010). We now demonstrate that the ability of inhibitory receptors to block PKC activation is a general feature of inhibitory receptors and is found after expression of the 5-HT(1Apl(b)) receptor and with activation of endogenous dopamine and FMRFamide receptors in sensory neurons. Pleural sensory neurons are heterogeneous for their inhibitory response to endogenous transmitters, with dopamine being the most prevalent, followed by FMRFamide, and only a small number of neurons with inhibitory responses to 5-HT. The inhibitory response is dominant, reduces membrane excitability and synaptic efficacy, and can reverse 5-HT facilitation at both naive and depressed synapses. Indeed, dopamine can reverse PKC translocation during the continued application of 5-HT. Reversal of translocation can also be seen after translocation mediated by an analog of diacylglycerol, suggesting inhibition is not through blockade of diacylglycerol production. The effects of inhibition on PKC translocation can be rescued by phosphatidic acid, consistent with the inhibitory response involving a reduction or block of production of this lipid. However, phosphatidic acid could not recover PKC-dependent synaptic facilitation due to an additional inhibitory effect on the non-L-type calcium flux linked to synaptic transmission. In summary, we find a novel mechanism downstream of inhibitory receptors linked to inhibition of PKC activation in Aplysia sensory neurons.