Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carole Jung is active.

Publication


Featured researches published by Carole Jung.


Handbook of experimental pharmacology | 2014

The TRPV4 Channel

Anna Garcia-Elias; Sanela Mrkonjić; Carole Jung; Carlos Pardo-Pastor; Rubén Vicente; Miguel A. Valverde

The widely distributed TRPV4 cationic channel participates in the transduction of both physical (osmotic, mechanical, and heat) and chemical (endogenous, plant-derived, and synthetic ligands) stimuli. In this chapter we will review TRPV4 expression, biophysics, structure, regulation, and interacting partners as well as physiological and pathological insights obtained in TRPV4 animal models and human genetic studies.


Cardiovascular Research | 2011

A gain-of-function SNP in TRPC4 cation channel protects against myocardial infarction

Carole Jung; Gemma G. Gené; Marta Tomás; Cristina Plata; Jana Selent; Manuel Pastor; César Fandos; Mariano Sentí; Gavin Lucas; Roberto Elosua; Miguel A. Valverde

AIMS The TRPC4 non-selective cation channel is widely expressed in the endothelium, where it generates Ca(2+) signals that participate in the endothelium-mediated vasodilatory response. This study sought to identify single-nucleotide polymorphisms (SNPs) in the TRPC4 gene that are associated with myocardial infarction (MI). METHODS AND RESULTS Our candidate-gene association studies identified a missense SNP (TRPC4-I957V) associated with a reduced risk of MI in diabetic patients [odds ratio (OR) = 0.61; confidence interval (CI), 0.40-0.95, P= 0.02]. TRPC4 was also associated with MI in the Wellcome Trust Case-Control Consortiums genome-wide data: an intronic SNP (rs7319926) within the same linkage disequilibrium block as TRPC4-I957V showed an OR of 0.86 (CI, 0.81-0.94; P =10(-4)). Functional studies of the missense SNP were carried out in HEK293 and CHO cells expressing wild-type or mutant channels. Patch-clamp studies and measurement of intracellular [Ca(2+)] in response to muscarinic agonists and direct G-protein activation showed increased channel activity in TRPC4-I957V-transfected cells compared with TRPC4-WT. Site-directed mutagenesis and molecular modelling of TRPC4-I957V suggested that the gain of function was due to the presence of a less bulky Val-957. This permits a firmer interaction between the TRPC4 and the catalytic site of the tyrosine kinase that phosphorylates TRPC4 at Tyr-959 and facilitates channel insertion into the plasma membrane. CONCLUSION We provide evidence for the association of a TRPC4 SNP with MI in population-based genetic studies. The higher Ca(2+) signals generated by TRPC4-I957V may ultimately facilitate the generation of endothelium- and nitric oxide-dependent vasorelaxation, thereby explaining its protective effect at the vasculature.


The EMBO Journal | 2016

GEMC1 is a critical regulator of multiciliated cell differentiation.

Berta Terré; Gabriele Piergiovanni; Gabriel Gil-Gómez; Sameh A. Youssef; Camille Stephan-Otto Attolini; Michaela Wilsch-Bräuninger; Carole Jung; Ana M. Rojas; Marko Marjanović; Philip A. Knobel; Lluís Palenzuela; Teresa López-Rovira; Stephen Forrow; Wieland B. Huttner; Miguel A. Valverde; Alain de Bruin; Vincenzo Costanzo; Travis H. Stracker

The generation of multiciliated cells (MCCs) is required for the proper function of many tissues, including the respiratory tract, brain, and germline. Defects in MCC development have been demonstrated to cause a subclass of mucociliary clearance disorders termed reduced generation of multiple motile cilia (RGMC). To date, only two genes, Multicilin (MCIDAS) and cyclin O (CCNO) have been identified in this disorder in humans. Here, we describe mice lacking GEMC1 (GMNC), a protein with a similar domain organization as Multicilin that has been implicated in DNA replication control. We have found that GEMC1‐deficient mice are growth impaired, develop hydrocephaly with a high penetrance, and are infertile, due to defects in the formation of MCCs in the brain, respiratory tract, and germline. Our data demonstrate that GEMC1 is a critical regulator of MCC differentiation and a candidate gene for human RGMC or related disorders.


Journal of Molecular and Cellular Cardiology | 2015

Mobilization of endothelial progenitor cells in acute cardiovascular events in the PROCELL study: time-course after acute myocardial infarction and stroke.

Ander Regueiro; E. Cuadrado-Godia; Carlos Bueno-Betí; Maribel Diaz-Ricart; Anna Oliveras; Susana Novella; Gemma G. Gené; Carole Jung; Isaac Subirana; José T. Ortiz-Pérez; Mercè Roqué; Xavier Freixa; Julio Núñez; Gines Escolar; Jaume Marrugat; Carlos Hermenegildo; Miguel A. Valverde; Jaume Roquer; Juan Sanchis; Magda Heras

The mobilization pattern and functionality of endothelial progenitor cells after an acute ischemic event remain largely unknown. The aim of our study was to characterize and compare the short- and long-term mobilization of endothelial progenitor cells and circulating endothelial cells after acute myocardial infarction or atherothrombotic stroke, and to determine the relationship between these cell counts and plasma concentrations of vascular cell adhesion molecule (VCAM-1) and Von Willebrand factor (VWF) as surrogate markers of endothelial damage and inflammation. In addition, we assessed whether endothelial progenitor cells behave like functional endothelial cells. We included 150 patients with acute myocardial infarction or atherothrombotic stroke and 145 controls. Endothelial progenitor cells [CD45-, CD34+, KDR+, CD133+], circulating endothelial cells [CD45-, CD146+, CD31+], VWF, and VCAM-1 levels were measured in controls (baseline only) and in patients within 24h (baseline) and at 7, 30, and 180 days after the event. Myocardial infarction patients had higher counts of endothelial progenitor cells and circulating endothelial cells than the controls (201.0/mL vs. 57.0/mL; p<0.01 and 181.0/mL vs. 62.0/mL; p<0.01). Endothelial progenitor cells peaked at 30 days post-infarction (201.0/mL vs. 369.5/mL; p<0.01), as did VCAM-1 (573.7 ng/mL vs. 701.8 ng/mL; p<0.01). At 180 days post-infarction, circulating endothelial cells and VWF decreased, compared to baseline. In stroke patients, the number of endothelial progenitor cells - but not circulating endothelial cells - was higher than in controls (90.0/mL vs. 37.0/mL; p=0.01; 105.0/mL vs. 71.0/mL; p=0.11). At 30 days after stroke, however, VCAM-1 peaked (628.1/mL vs. 869.1/mL; p<0.01) but there was no significant change in endothelial progenitor cells (90/mL vs. 78/mL; p<0.34). At 180 days after stroke, circulating endothelial cells and VWF decreased, compared to baseline. Cultured endothelial progenitor cells from controls and myocardial infarction patients had endothelial phenotype characteristics and exhibited functional differences in adhesion and Ca(2+) influx, but not in proliferation and vasculogenesis. In myocardial infarction patients, VCAM-1 levels and mobilization of endothelial progenitor cells peaked at 30 days after the ischemic event. Although a similar VCAM-1 kinetic was observed in stroke patients, endothelial progenitor cells did not increase. Endothelial progenitor cells had mature endothelial capabilities in vitro.


Journal of Biological Chemistry | 2011

Ion Channels in Asthma

Miguel A. Valverde; Gerard Cantero-Recasens; Anna Garcia-Elias; Carole Jung; Amado Carreras-Sureda; Rubén Vicente

Ion channels are specialized transmembrane proteins that permit the passive flow of ions following their electrochemical gradients. In the airways, ion channels participate in the production of epithelium-based hydroelectrolytic secretions and in the control of intracellular Ca2+ levels that will ultimately activate almost all lung cells, either resident or circulating. Thus, ion channels have been the center of many studies aiming to understand asthma pathophysiological mechanisms or to identify therapeutic targets for better control of the disease. In this minireview, we focus on molecular, genetic, and animal model studies associating ion channels with asthma.


Nature Communications | 2017

TRPV4 activation triggers protective responses to bacterial lipopolysaccharides in airway epithelial cells

Yeranddy A. Alpizar; Brett Boonen; Alicia Sanchez; Carole Jung; Alejandro López-Requena; Robbe Naert; Brecht Steelant; Katrien Luyts; Cristina Plata; Vanessa De Vooght; Jeroen Vanoirbeek; Víctor M. Meseguer; Thomas Voets; Julio L. Alvarez; Peter Hellings; Peter Hoet; Benoit Nemery; Miguel A. Valverde; Karel Talavera

Lipopolysaccharides (LPS), the major components of the wall of gram-negative bacteria, trigger powerful defensive responses in the airways via mechanisms thought to rely solely on the Toll-like receptor 4 (TLR4) immune pathway. Here we show that airway epithelial cells display an increase in intracellular Ca2+ concentration within seconds of LPS application. This response occurs in a TLR4-independent manner, via activation of the transient receptor potential vanilloid 4 cation channel (TRPV4). We found that TRPV4 mediates immediate LPS-induced increases in ciliary beat frequency and the production of bactericidal nitric oxide. Upon LPS challenge TRPV4-deficient mice display exacerbated ventilatory changes and recruitment of polymorphonuclear leukocytes into the airways. We conclude that LPS-induced activation of TRPV4 triggers signaling mechanisms that operate faster and independently from the canonical TLR4 immune pathway, leading to immediate protective responses such as direct antimicrobial action, increase in airway clearance, and the regulation of the inflammatory innate immune reaction.LPS is a major component of gram-negative bacterial cell walls, and triggers immune responses in airway epithelium by activating TLR4. Here the authors show that LPS also activates TRPV4, thereby inducing fast defense responses such as nitric oxide production and increased ciliary beating in mice.


Particle and Fibre Toxicology | 2017

Silica nanoparticles inhibit the cation channel TRPV4 in airway epithelial cells

Alicia Sanchez; Julio L. Alvarez; Kateryna Demydenko; Carole Jung; Yeranddy A. Alpizar; Julio Alvarez-Collazo; Stevan M. Cokic; Miguel A. Valverde; Peter Hoet; Karel Talavera

BackgroundSilica nanoparticles (SiNPs) have numerous beneficial properties and are extensively used in cosmetics and food industries as anti-caking, densifying and hydrophobic agents. However, the increasing exposure levels experienced by the general population and the ability of SiNPs to penetrate cells and tissues have raised concerns about possible toxic effects of this material. Although SiNPs are known to affect the function of the airway epithelium, the molecular targets of these particles remain largely unknown. Given that SiNPs interact with the plasma membrane of epithelial cells we hypothesized that they may affect the function of Transient Receptor Potential Vanilloid 4 (TRPV4), a cation-permeable channel that regulates epithelial barrier function. The main aims of this study were to evaluate the effects of SiNPs on the activation of TRPV4 and to determine whether these alter the positive modulatory action of this channel on the ciliary beat frequency in airway epithelial cells.ResultsUsing fluorometric measurements of intracellular Ca2+ concentration ([Ca2+]i) we found that SiNPs inhibit activation of TRPV4 by the synthetic agonist GSK1016790A in cultured human airway epithelial cells 16HBE and in primary cultured mouse tracheobronchial epithelial cells. Inhibition of TRPV4 by SiNPs was confirmed in intracellular Ca2+ imaging and whole-cell patch-clamp experiments performed in HEK293T cells over-expressing this channel. In addition to these effects, SiNPs were found to induce a significant increase in basal [Ca2+]i, but in a TRPV4-independent manner. SiNPs enhanced the activation of the capsaicin receptor TRPV1, demonstrating that these particles have a specific inhibitory action on TRPV4 activation. Finally, we found that SiNPs abrogate the increase in ciliary beat frequency induced by TRPV4 activation in mouse airway epithelial cells.ConclusionsOur results show that SiNPs inhibit TRPV4 activation, and that this effect may impair the positive modulatory action of the stimulation of this channel on the ciliary function in airway epithelial cells. These findings unveil the cation channel TRPV4 as a primary molecular target of SiNPs.


Oncotarget | 2017

Constitutive Cyclin O deficiency results in penetrant hydrocephalus, impaired growth and infertility

Marc Núnez-Ollé; Carole Jung; Berta Terré; Norman A. Balsiger; Cristina Plata; Ramon Roset; Carlos Pardo-Pastor; Marta Garrido; Santiago Rojas; Francesc Alameda; Josep Lloreta; Juan Martín-Caballero; Juana M. Flores; Travis H. Stracker; Miguel A. Valverde; Francisco Muñoz; Gabriel Gil-Gómez

Cyclin O (encoded by CCNO) is a member of the cyclin family with regulatory functions in ciliogenesis and apoptosis. Homozygous CCNO mutations have been identified in human patients with Reduced Generation of Multiple Motile Cilia (RGMC) and conditional inactivation of Ccno in the mouse recapitulates some of the pathologies associated with the human disease. These include defects in the development of motile cilia and hydrocephalus. To further investigate the functions of Ccno in vivo, we have generated a new mouse model characterized by the constitutive loss of Ccno in all tissues and followed a cohort during ageing. Ccno-/- mice were growth impaired and developed hydrocephalus with high penetrance. In addition, some Ccno+/- mice also developed hydrocephalus and affected Ccno-/- and Ccno+/- mice exhibited additional CNS defects including cortical thinning and hippocampal abnormalities. In addition to the CNS defects, both male and female Ccno-/- mice were infertile and female mice exhibited few motile cilia in the oviduct. Our results further establish CCNO as an important gene for normal development and suggest that heterozygous CCNO mutations could underlie hydrocephalus or diminished fertility in some human patients.


Science Signaling | 2018

Functional coupling of GABAA/B receptors and the channel TRPV4 mediates rapid progesterone signaling in the oviduct

Carole Jung; Víctor Fernández-Dueñas; Cristina Plata; Anna Garcia-Elias; Francisco Ciruela; José M. Fernández-Fernández; Miguel A. Valverde

Progesterone and GABA receptor agonists stimulate cilial beating in the mouse oviduct. How progesterone stimulates cilia The transport of eggs along the ciliated epithelium of the oviduct depends on the ciliary beat frequency (CBF), a process that requires intracellular Ca2+ signaling. The hormone progesterone is thought to accelerate egg transport along the oviduct. Because any rapid effects of progesterone on CBF would be incompatible with its function as a transcriptional regulator, Jung et al. investigated how progesterone affected Ca2+ signaling in mouse ciliated oviduct cells. They found that progesterone stimulated increased intracellular Ca2+ concentrations in a process that required the nonselective cationic channel TRPV4 and the stepwise activation of GABAA and GABAB receptors, which physically associated with each other in response to progesterone and GABAergic agonists. Together, these data implicate progesterone and GABA receptor agonists in the rapid acceleration of cilial activity in the oviduct. The molecular mechanism by which progesterone (P4) modulates the transport of ova and embryos along the oviduct is not fully resolved. We report a rapid response to P4 and agonists of γ-aminobutyric acid receptors A and B (GABAA/B) in the mouse oviduct that was characterized by oscillatory Ca2+ signals and increased ciliary beat frequency (CBF). Pharmacological manipulation, genetic ablation, and siRNA-mediated knockdown in oviductal cells, as well as overexpression experiments in HEK 293T cells, confirmed the participation of the cationic channel TRPV4, different subunits of GABAA (α1 to α3, β2, and β3), and GABAB1 in P4-induced responses. TRPV4-mediated Ca2+ entry in close proximity to the inositol trisphosphate receptor was required to initiate and maintain Ca2+ oscillations after P4 binding to GABAA and transactivation of Gi/o protein–coupled GABAB receptors. Coimmunoprecipitation experiments and imaging of native tissue and HEK 293T cells demonstrated the close association of GABAA and GABAB1 receptors and the activation of Gi/o proteins in response to P4 and GABA receptor agonists, confirming a molecular mechanism in which P4 and GABAergic agonists cooperatively stimulate cilial beating.


Pflügers Archiv: European Journal of Physiology | 2009

The progesterone receptor regulates the expression of TRPV4 channel

Carole Jung; César Fandos; Ivan M. Lorenzo; Cristina Plata; Jacqueline Fernandes; Gemma G. Gené; Esther Vázquez; Miguel A. Valverde

Collaboration


Dive into the Carole Jung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yeranddy A. Alpizar

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kateryna Demydenko

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alicia Sanchez

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Karel Talavera

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Peter Hoet

Medical Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge