Carolin Wichmann
University of Göttingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carolin Wichmann.
Science | 2006
Robert J. Kittel; Carolin Wichmann; Tobias M. Rasse; Wernher Fouquet; Manuela Schmidt; Andreas Schmid; Dhananjay A. Wagh; Christian Pawlu; Robert Kellner; Katrin I. Willig; Stefan W. Hell; Erich Buchner; Manfred Heckmann; Stephan J. Sigrist
The molecular organization of presynaptic active zones during calcium influx–triggered neurotransmitter release is the focus of intense investigation. The Drosophila coiled-coil domain protein Bruchpilot (BRP) was observed in donut-shaped structures centered at active zones of neuromuscular synapses by using subdiffraction resolution STED (stimulated emission depletion) fluorescence microscopy. At brp mutant active zones, electron-dense projections (T-bars) were entirely lost, Ca2+ channels were reduced in density, evoked vesicle release was depressed, and short-term plasticity was altered. BRP-like proteins seem to establish proximity between Ca2+ channels and vesicles to allow efficient transmitter release and patterned synaptic plasticity.
Journal of Cell Biology | 2009
Wernher Fouquet; David Owald; Carolin Wichmann; Sara Mertel; Harald Depner; Marcus Dyba; Stefan Hallermann; Robert J. Kittel; Stefan Eimer; Stephan J. Sigrist
Synaptic vesicles fuse at active zone (AZ) membranes where Ca2+ channels are clustered and that are typically decorated by electron-dense projections. Recently, mutants of the Drosophila melanogaster ERC/CAST family protein Bruchpilot (BRP) were shown to lack dense projections (T-bars) and to suffer from Ca2+ channel–clustering defects. In this study, we used high resolution light microscopy, electron microscopy, and intravital imaging to analyze the function of BRP in AZ assembly. Consistent with truncated BRP variants forming shortened T-bars, we identify BRP as a direct T-bar component at the AZ center with its N terminus closer to the AZ membrane than its C terminus. In contrast, Drosophila Liprin-α, another AZ-organizing protein, precedes BRP during the assembly of newly forming AZs by several hours and surrounds the AZ center in few discrete punctae. BRP seems responsible for effectively clustering Ca2+ channels beneath the T-bar density late in a protracted AZ formation process, potentially through a direct molecular interaction with intracellular Ca2+ channel domains.
Science | 2011
Karen S. Y. Liu; Matthias Siebert; Sara Mertel; Elena Knoche; Stephanie Wegener; Carolin Wichmann; Tanja Matkovic; Karzan Muhammad; Harald Depner; Christoph Mettke; Johanna Bückers; Stefan W. Hell; Martin R. Müller; Graeme W. Davis; Dietmar Schmitz; Stephan J. Sigrist
Transmitter release at the fly neuromuscular junction is abolished in the absence of a scaffold protein. The molecular machinery mediating the fusion of synaptic vesicles (SVs) at presynaptic active zone (AZ) membranes has been studied in detail, and several essential components have been identified. AZ-associated protein scaffolds are viewed as only modulatory for transmission. We discovered that Drosophila Rab3-interacting molecule (RIM)–binding protein (DRBP) is essential not only for the integrity of the AZ scaffold but also for exocytotic neurotransmitter release. Two-color stimulated emission depletion microscopy showed that DRBP surrounds the central Ca2+ channel field. In drbp mutants, Ca2+ channel clustering and Ca2+ influx were impaired, and synaptic release probability was drastically reduced. Our data identify RBP family proteins as prime effectors of the AZ scaffold that are essential for the coupling of SVs, Ca2+ channels, and the SV fusion machinery.
Journal of Cell Biology | 2010
David Owald; Wernher Fouquet; Manuela Schmidt; Carolin Wichmann; Sara Mertel; Harald Depner; Frauke Christiansen; Christina Zube; Christine Quentin; Jorg Körner; Henning Urlaub; Karl Mechtler; Stephan J. Sigrist
A proteomics approach identifies Drosophila Syd-1 as a Bruchpilot binding partner that controls maturation on both sides of the neuromuscular junction.
Proceedings of the National Academy of Sciences of the United States of America | 2006
James A. Ashley; David Gorczyca; Michael Gorczyca; Dennis Mathew; Carolin Wichmann; Stephan J. Sigrist; Vivian Budnik
The Wingless pathway plays an essential role during synapse development. Recent studies at Drosophila glutamatergic synapses suggest that Wingless is secreted by motor neuron terminals and binds to postsynaptic Drosophila Frizzled-2 (DFz2) receptors. DFz2 is, in turn, endocytosed and transported to the muscle perinuclear area, where it is cleaved, and the C-terminal fragment is imported into the nucleus, presumably to regulate transcription during synapse growth. Alterations in this pathway interfere with the formation of new synaptic boutons and lead to aberrant synaptic structures. Here, we show that the 7 PDZ protein dGRIP is necessary for the trafficking of DFz2 to the nucleus. dGRIP is localized to Golgi and trafficking vesicles, and dgrip mutants mimic the synaptic phenotypes observed in wg and dfz2 mutants. DFz2 and dGRIP colocalize in trafficking vesicles, and a severe decrease in dGRIP levels prevents the transport of endocytosed DFz2 receptors to the nucleus. Moreover, coimmunoprecipitation experiments in transfected cells and yeast two-hybrid assays suggest that the C terminus of DFz2 interacts directly with the PDZ domains 4 and 5. These results provide a mechanism by which DFz2 is transported from the postsynaptic membrane to the postsynaptic nucleus during synapse formation and implicate dGRIP as an essential molecule in the transport of this signal.
Neuron | 2010
Daniel Banovic; Omid Khorramshahi; David Owald; Carolin Wichmann; Tamara Riedt; Wernher Fouquet; Rui Tian; Stephan J. Sigrist; Hermann Aberle
Precise apposition of presynaptic and postsynaptic domains is a fundamental property of all neuronal circuits. Experiments in vitro suggest that Neuroligins and Neurexins function as key regulatory proteins in this process. In a genetic screen, we recovered several mutant alleles of Drosophila neuroligin 1 (dnlg1) that cause a severe reduction in bouton numbers at neuromuscular junctions (NMJs). In accord with reduced synapse numbers, these NMJs show reduced synaptic transmission. Moreover, lack of postsynaptic DNlg1 leads to deficits in the accumulation of postsynaptic glutamate receptors, scaffold proteins, and subsynaptic membranes, while increased DNlg1 triggers ectopic postsynaptic differentiation via its cytoplasmic domain. DNlg1 forms discrete clusters adjacent to postsynaptic densities. Formation of these clusters depends on presynaptic Drosophila Neurexin (DNrx). However, DNrx binding is not an absolute requirement for DNlg1 function. Instead, other signaling components are likely involved in DNlg1 transsynaptic functions, with essential interactions organized by the DNlg1 extracellular domain but also by the cytoplasmic domain.
Nature Neuroscience | 2012
David Owald; Omid Khorramshahi; Varun K Gupta; Daniel Banovic; Harald Depner; Wernher Fouquet; Carolin Wichmann; Sara Mertel; Stefan Eimer; Eric Reynolds; Matthew Holt; Hermann Aberle; Stephan J. Sigrist
Synapse formation and maturation requires bidirectional communication across the synaptic cleft. The trans-synaptic Neurexin-Neuroligin complex can bridge this cleft, and severe synapse assembly deficits are found in Drosophila melanogaster neuroligin (Nlg1, dnlg1) and neurexin (Nrx-1, dnrx) mutants. We show that the presynaptic active zone protein Syd-1 interacts with Nrx-1 to control synapse formation at the Drosophila neuromuscular junction. Mutants in Syd-1 (RhoGAP100F, dsyd-1), Nrx-1 and Nlg1 shared active zone cytomatrix defects, which were nonadditive. Syd-1 and Nrx-1 formed a complex in vivo, and Syd-1 was important for synaptic clustering and immobilization of Nrx-1. Consequently, postsynaptic clustering of Nlg1 was affected in Syd-1 mutants, and in vivo glutamate receptor incorporation was changed in Syd-1, Nrx-1 and Nlg1 mutants. Stabilization of nascent Syd-1–Liprin-α (DLiprin-α) clusters, important to initialize active zone formation, was Nlg1 dependent. Thus, cooperation between Syd-1 and Nrx-1–Nlg1 seems to orchestrate early assembly processes between pre- and postsynaptic membranes, promoting avidity of newly forming synaptic scaffolds.
The Journal of Neuroscience | 2010
Stefan Hallermann; Robert J. Kittel; Carolin Wichmann; Annika Weyhersmüller; Wernher Fouquet; Sara Mertel; David Owald; Stefan Eimer; Harald Depner; Martin Schwärzel; Stephan J. Sigrist; Manfred Heckmann
At presynaptic active zones (AZs), the frequently observed tethering of synaptic vesicles to an electron-dense cytomatrix represents a process of largely unknown functional significance. Here, we identified a hypomorphic allele, brpnude, lacking merely the last 1% of the C-terminal amino acids (17 of 1740) of the active zone protein Bruchpilot. In brpnude, electron-dense bodies were properly shaped, though entirely bare of synaptic vesicles. While basal glutamate release was unchanged, paired-pulse and sustained stimulation provoked depression. Furthermore, rapid recovery following sustained release was slowed. Our results causally link, with intramolecular precision, the tethering of vesicles at the AZ cytomatrix to synaptic depression.
Journal of Cell Biology | 2013
Tanja Matkovic; Matthias Siebert; Elena Knoche; Harald Depner; Sara Mertel; David Owald; Manuela Schmidt; Ulrich Thomas; Albert Sickmann; Dirk Kamin; Stefan W. Hell; Jörg Bürger; Christina Hollmann; Thorsten Mielke; Carolin Wichmann; Stephan J. Sigrist
Two Bruchpilot isoforms create a stereotypic arrangement of the cytomatrix that defines the size of the readily releasable pool of synaptic vesicles.
The EMBO Journal | 2014
Aaron B. Wong; Mark A. Rutherford; Mantas Gabrielaitis; Tina Pangršič; Fabian Göttfert; Thomas Frank; Susann Michanski; Stefan W. Hell; Fred Wolf; Carolin Wichmann; Tobias Moser
Cochlear inner hair cells (IHCs) develop from pre‐sensory pacemaker to sound transducer. Here, we report that this involves changes in structure and function of the ribbon synapses between IHCs and spiral ganglion neurons (SGNs) around hearing onset in mice. As synapses matured they changed from holding several small presynaptic active zones (AZs) and apposed postsynaptic densities (PSDs) to one large AZ/PSD complex per SGN bouton. After the onset of hearing (i) IHCs had fewer and larger ribbons; (ii) CaV1.3 channels formed stripe‐like clusters rather than the smaller and round clusters at immature AZs; (iii) extrasynaptic CaV1.3‐channels were selectively reduced, (iv) the intrinsic Ca2+ dependence of fast exocytosis probed by Ca2+ uncaging remained unchanged but (v) the apparent Ca2+ dependence of exocytosis linearized, when assessed by progressive dihydropyridine block of Ca2+ influx. Biophysical modeling of exocytosis at mature and immature AZ topographies suggests that Ca2+ influx through an individual channel dominates the [Ca2+] driving exocytosis at each mature release site. We conclude that IHC synapses undergo major developmental refinements, resulting in tighter spatial coupling between Ca2+ influx and exocytosis.