Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harald Depner is active.

Publication


Featured researches published by Harald Depner.


Journal of Cell Biology | 2009

Maturation of active zone assembly by Drosophila Bruchpilot

Wernher Fouquet; David Owald; Carolin Wichmann; Sara Mertel; Harald Depner; Marcus Dyba; Stefan Hallermann; Robert J. Kittel; Stefan Eimer; Stephan J. Sigrist

Synaptic vesicles fuse at active zone (AZ) membranes where Ca2+ channels are clustered and that are typically decorated by electron-dense projections. Recently, mutants of the Drosophila melanogaster ERC/CAST family protein Bruchpilot (BRP) were shown to lack dense projections (T-bars) and to suffer from Ca2+ channel–clustering defects. In this study, we used high resolution light microscopy, electron microscopy, and intravital imaging to analyze the function of BRP in AZ assembly. Consistent with truncated BRP variants forming shortened T-bars, we identify BRP as a direct T-bar component at the AZ center with its N terminus closer to the AZ membrane than its C terminus. In contrast, Drosophila Liprin-α, another AZ-organizing protein, precedes BRP during the assembly of newly forming AZs by several hours and surrounds the AZ center in few discrete punctae. BRP seems responsible for effectively clustering Ca2+ channels beneath the T-bar density late in a protracted AZ formation process, potentially through a direct molecular interaction with intracellular Ca2+ channel domains.


Science | 2011

RIM-binding protein, a central part of the active zone, is essential for neurotransmitter release

Karen S. Y. Liu; Matthias Siebert; Sara Mertel; Elena Knoche; Stephanie Wegener; Carolin Wichmann; Tanja Matkovic; Karzan Muhammad; Harald Depner; Christoph Mettke; Johanna Bückers; Stefan W. Hell; Martin R. Müller; Graeme W. Davis; Dietmar Schmitz; Stephan J. Sigrist

Transmitter release at the fly neuromuscular junction is abolished in the absence of a scaffold protein. The molecular machinery mediating the fusion of synaptic vesicles (SVs) at presynaptic active zone (AZ) membranes has been studied in detail, and several essential components have been identified. AZ-associated protein scaffolds are viewed as only modulatory for transmission. We discovered that Drosophila Rab3-interacting molecule (RIM)–binding protein (DRBP) is essential not only for the integrity of the AZ scaffold but also for exocytotic neurotransmitter release. Two-color stimulated emission depletion microscopy showed that DRBP surrounds the central Ca2+ channel field. In drbp mutants, Ca2+ channel clustering and Ca2+ influx were impaired, and synaptic release probability was drastically reduced. Our data identify RBP family proteins as prime effectors of the AZ scaffold that are essential for the coupling of SVs, Ca2+ channels, and the SV fusion machinery.


Journal of Cell Biology | 2010

A Syd-1 homologue regulates pre- and postsynaptic maturation in Drosophila

David Owald; Wernher Fouquet; Manuela Schmidt; Carolin Wichmann; Sara Mertel; Harald Depner; Frauke Christiansen; Christina Zube; Christine Quentin; Jorg Körner; Henning Urlaub; Karl Mechtler; Stephan J. Sigrist

A proteomics approach identifies Drosophila Syd-1 as a Bruchpilot binding partner that controls maturation on both sides of the neuromuscular junction.


Nature Neuroscience | 2012

Cooperation of Syd-1 with Neurexin synchronizes pre- with postsynaptic assembly

David Owald; Omid Khorramshahi; Varun K Gupta; Daniel Banovic; Harald Depner; Wernher Fouquet; Carolin Wichmann; Sara Mertel; Stefan Eimer; Eric Reynolds; Matthew Holt; Hermann Aberle; Stephan J. Sigrist

Synapse formation and maturation requires bidirectional communication across the synaptic cleft. The trans-synaptic Neurexin-Neuroligin complex can bridge this cleft, and severe synapse assembly deficits are found in Drosophila melanogaster neuroligin (Nlg1, dnlg1) and neurexin (Nrx-1, dnrx) mutants. We show that the presynaptic active zone protein Syd-1 interacts with Nrx-1 to control synapse formation at the Drosophila neuromuscular junction. Mutants in Syd-1 (RhoGAP100F, dsyd-1), Nrx-1 and Nlg1 shared active zone cytomatrix defects, which were nonadditive. Syd-1 and Nrx-1 formed a complex in vivo, and Syd-1 was important for synaptic clustering and immobilization of Nrx-1. Consequently, postsynaptic clustering of Nlg1 was affected in Syd-1 mutants, and in vivo glutamate receptor incorporation was changed in Syd-1, Nrx-1 and Nlg1 mutants. Stabilization of nascent Syd-1–Liprin-α (DLiprin-α) clusters, important to initialize active zone formation, was Nlg1 dependent. Thus, cooperation between Syd-1 and Nrx-1–Nlg1 seems to orchestrate early assembly processes between pre- and postsynaptic membranes, promoting avidity of newly forming synaptic scaffolds.


The Journal of Neuroscience | 2010

Naked dense bodies provoke depression.

Stefan Hallermann; Robert J. Kittel; Carolin Wichmann; Annika Weyhersmüller; Wernher Fouquet; Sara Mertel; David Owald; Stefan Eimer; Harald Depner; Martin Schwärzel; Stephan J. Sigrist; Manfred Heckmann

At presynaptic active zones (AZs), the frequently observed tethering of synaptic vesicles to an electron-dense cytomatrix represents a process of largely unknown functional significance. Here, we identified a hypomorphic allele, brpnude, lacking merely the last 1% of the C-terminal amino acids (17 of 1740) of the active zone protein Bruchpilot. In brpnude, electron-dense bodies were properly shaped, though entirely bare of synaptic vesicles. While basal glutamate release was unchanged, paired-pulse and sustained stimulation provoked depression. Furthermore, rapid recovery following sustained release was slowed. Our results causally link, with intramolecular precision, the tethering of vesicles at the AZ cytomatrix to synaptic depression.


Journal of Cell Biology | 2013

The bruchpilot cytomatrix determines the size of the readily releasable pool of synaptic vesicles

Tanja Matkovic; Matthias Siebert; Elena Knoche; Harald Depner; Sara Mertel; David Owald; Manuela Schmidt; Ulrich Thomas; Albert Sickmann; Dirk Kamin; Stefan W. Hell; Jörg Bürger; Christina Hollmann; Thorsten Mielke; Carolin Wichmann; Stephan J. Sigrist

Two Bruchpilot isoforms create a stereotypic arrangement of the cytomatrix that defines the size of the readily releasable pool of synaptic vesicles.


PLOS Computational Biology | 2015

Dynamical Organization of Syntaxin-1A at the Presynaptic Active Zone

Alexander Ullrich; Mathias A. Böhme; Johannes Schöneberg; Harald Depner; Stephan J. Sigrist; Frank Noé

Synaptic vesicle fusion is mediated by SNARE proteins forming in between synaptic vesicle (v-SNARE) and plasma membrane (t-SNARE), one of which is Syntaxin-1A. Although exocytosis mainly occurs at active zones, Syntaxin-1A appears to cover the entire neuronal membrane. By using STED super-resolution light microscopy and image analysis of Drosophila neuro-muscular junctions, we show that Syntaxin-1A clusters are more abundant and have an increased size at active zones. A computational particle-based model of syntaxin cluster formation and dynamics is developed. The model is parametrized to reproduce Syntaxin cluster-size distributions found by STED analysis, and successfully reproduces existing FRAP results. The model shows that the neuronal membrane is adjusted in a way to strike a balance between having most syntaxins stored in large clusters, while still keeping a mobile fraction of syntaxins free or in small clusters that can efficiently search the membrane or be traded between clusters. This balance is subtle and can be shifted toward almost no clustering and almost complete clustering by modifying the syntaxin interaction energy on the order of only 1 kBT. This capability appears to be exploited at active zones. The larger active-zone syntaxin clusters are more stable and provide regions of high docking and fusion capability, whereas the smaller clusters outside may serve as flexible reserve pool or sites of spontaneous ectopic release.


Nature Communications | 2015

Presynaptic spinophilin tunes neurexin signalling to control active zone architecture and function

Karzan Muhammad; Suneel Reddy-Alla; Jan H. Driller; Dietmar Schreiner; Ulises Rey; Mathias A. Böhme; Christina Hollmann; Niraja Ramesh; Harald Depner; Janine Lützkendorf; Tanja Matkovic; Torsten Götz; Dominique Dufour Bergeron; Jan Schmoranzer; Fabian Goettfert; Matthew Holt; Markus C. Wahl; Stefan W. Hell; Peter Scheiffele; Alexander M. Walter; Bernhard Loll; Stephan J. Sigrist

Assembly and maturation of synapses at the Drosophila neuromuscular junction (NMJ) depend on trans-synaptic neurexin/neuroligin signalling, which is promoted by the scaffolding protein Syd-1 binding to neurexin. Here we report that the scaffold protein spinophilin binds to the C-terminal portion of neurexin and is needed to limit neurexin/neuroligin signalling by acting antagonistic to Syd-1. Loss of presynaptic spinophilin results in the formation of excess, but atypically small active zones. Neuroligin-1/neurexin-1/Syd-1 levels are increased at spinophilin mutant NMJs, and removal of single copies of the neurexin-1, Syd-1 or neuroligin-1 genes suppresses the spinophilin-active zone phenotype. Evoked transmission is strongly reduced at spinophilin terminals, owing to a severely reduced release probability at individual active zones. We conclude that presynaptic spinophilin fine-tunes neurexin/neuroligin signalling to control active zone number and functionality, thereby optimizing them for action potential-induced exocytosis.


eLife | 2014

Drep-2 is a novel synaptic protein important for learning and memory

Till F.M. Andlauer; Sabrina Scholz-Kornehl; Rui Tian; Marieluise Kirchner; Husam Babikir; Harald Depner; Bernhard Loll; Christine Quentin; Varun K Gupta; Matthew Holt; Shubham Dipt; Michael Cressy; Markus C. Wahl; André Fiala; Matthias Selbach; Martin Schwärzel; Stephan J. Sigrist

CIDE-N domains mediate interactions between the DNase Dff40/CAD and its inhibitor Dff45/ICAD. In this study, we report that the CIDE-N protein Drep-2 is a novel synaptic protein important for learning and behavioral adaptation. Drep-2 was found at synapses throughout the Drosophila brain and was strongly enriched at mushroom body input synapses. It was required within Kenyon cells for normal olfactory short- and intermediate-term memory. Drep-2 colocalized with metabotropic glutamate receptors (mGluRs). Chronic pharmacological stimulation of mGluRs compensated for drep-2 learning deficits, and drep-2 and mGluR learning phenotypes behaved non-additively, suggesting that Drep 2 might be involved in effective mGluR signaling. In fact, Drosophila fragile X protein mutants, shown to benefit from attenuation of mGluR signaling, profited from the elimination of drep-2. Thus, Drep-2 is a novel regulatory synaptic factor, probably intersecting with metabotropic signaling and translational regulation. DOI: http://dx.doi.org/10.7554/eLife.03895.001


Polymer Chemistry | 2014

Structure related transport properties and cellular uptake of hyperbranched polyglycerol sulfates with hydrophobic cores

Florian Paulus; Dirk Steinhilber; Pia Welker; Dorothea Mangoldt; Kai Licha; Harald Depner; Stephan J. Sigrist; Rainer Haag

A set of six hydrophobically derivatized polymers based on polyglycerol sulfates have been investigated to determine the influence of scaffold architecture on the encapsulation properties of hydrophobic guests. Each of three block and statistical copolymers has been synthesized with phenyl, naphthyl, and biphenyl substituents in a one-pot procedure. The copolymers have been functionalized with sulfate groups in order to introduce an electrostatically repulsive surface that can stabilize the aggregated carriers. In addition, sulfates provide a highly active targeting moiety for inflammation and cellular uptake. UV measurements show a supramolecular encapsulation of the investigated guest molecules in the low μM range. The transport studies with pyrene and an indocarbocyanine dye further indicated a core–shell-type architecture which provides a distinct amphiphilicity as required for supramolecular guest complexation. The combination of a host functionality with an active sulfate targeting moiety has been used to investigate the structure related cellular transport properties.

Collaboration


Dive into the Harald Depner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara Mertel

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tanja Matkovic

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Wernher Fouquet

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Bernhard Loll

Free University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge