Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carolina Gálvez-Montón is active.

Publication


Featured researches published by Carolina Gálvez-Montón.


Journal of Molecular and Cellular Cardiology | 2010

Human progenitor cells derived from cardiac adipose tissue ameliorate myocardial infarction in rodents.

Antoni Bayes-Genis; Carolina Soler-Botija; Jordi Farré; Pilar Sepúlveda; Angel Raya; Santiago Roura; Cristina Prat-Vidal; Carolina Gálvez-Montón; José Anastasio Montero; Dirk Büscher; Juan Carlos Izpisua Belmonte

Myocardial infarction caused by vascular occlusion results in the formation of nonfunctional fibrous tissue. Cumulative evidence indicates that cell therapy modestly improves cardiac function; thus, novel cell sources with the potential to repair injured tissue are actively sought. Here, we identify and characterize a cell population of cardiac adipose tissue-derived progenitor cells (ATDPCs) from biopsies of human adult cardiac adipose tissue. Cardiac ATDPCs express a mesenchymal stem cell-like marker profile (strongly positive for CD105, CD44, CD166, CD29 and CD90) and have immunosuppressive capacity. Moreover, cardiac ATDPCs have an inherent cardiac-like phenotype and were able to express de novo myocardial and endothelial markers in vitro but not to differentiate into adipocytes. In addition, when cardiac ATDPCs were transplanted into injured myocardium in mouse and rat models of myocardial infarction, the engrafted cells expressed cardiac (troponin I, sarcomeric α-actinin) and endothelial (CD31) markers, vascularization increased, and infarct size was reduced in mice and rats. Moreover, significant differences between control and cell-treated groups were found in fractional shortening and ejection fraction, and the anterior wall remained significantly thicker 30days after cardiac delivery of ATDPCs. Finally, cardiac ATDPCs secreted proangiogenic factors under in vitro hypoxic conditions, suggesting a paracrine effect to promote local vascularization. Our results indicate that the population of progenitor cells isolated from human cardiac adipose tissue (cardiac ATDPCs) may be valid candidates for future use in cell therapy to regenerate injured myocardium.


PLOS ONE | 2012

Human umbilical cord blood-derived mesenchymal stem cells promote vascular growth in vivo.

Santiago Roura; Juli R. Bagó; Carolina Soler-Botija; Josep Maria Pujal; Carolina Gálvez-Montón; Cristina Prat-Vidal; Aida Llucià-Valldeperas; Jerónimo Blanco; Antoni Bayes-Genis

Stem cell therapies are promising strategies to regenerate human injured tissues, including ischemic myocardium. Here, we examined the acquisition of properties associated with vascular growth by human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs), and whether they promoted vascular growth in vivo. UCBMSCs were induced in endothelial cell-specific growth medium (EGM-2) acquiring new cell markers, increased Ac-LDL uptake, and migratory capacity as assessed by qRT-PCR, Western blotting, indirect immunofluorescence, and invasion assays. Angiogenic and vasculogenic potentials could be anticipated by in vitro experiments showing self organization into Matrigel-mediated cell networks, and activation of circulating angiogenic-supportive myeloid cells. In mice, following subcutaneous co-injection with Matrigel, UCBMSCs modified to co-express bioluminescent (luciferases) and fluorescent proteins were demonstrated to participate in the formation of new microvasculature connected with the host circulatory system. Response of UCBMSCs to ischemia was explored in a mouse model of acute myocardial infarction (MI). UCBMSCs transplanted using a fibrin patch survived 4 weeks post-implantation and organized into CD31+network structures above the infarcted myocardium. MI-treated animals showed a reduced infarct scar and a larger vessel-occupied area in comparison with MI-control animals. Taken together, the presented results show that UCBMSCs can be induced in vitro to acquire angiogenic and vasculogenic properties and contribute to vascular growth in vivo.


Cardiovascular Research | 2011

Transposition of a pericardial-derived vascular adipose flap for myocardial salvage after infarct.

Carolina Gálvez-Montón; Cristina Prat-Vidal; Santiago Roura; Jordi Farré; Carolina Soler-Botija; Aida Llucià-Valldeperas; Idoia Díaz-Güemes; Francisco M. Sánchez-Margallo; Alejandro Arı́s; Antoni Bayes-Genis

AIMS Coronary artery occlusion is associated with the risk of ventricular remodelling, heart failure, and cardiogenic shock. Novel strategies are sought to treat these ominous complications. We examined the effect of a pericardial-derived fat flap secured over an acute infarct caused by coronary occlusion. METHODS AND RESULTS A novel intervention consisting of the pericardial isolation of a vascularized adipose flap and its transposition fully covering acute infarcted myocardium was developed in the swine model of coronary artery ligation (n= 52). Left ventricular (LV) ejection fraction and LV end-diastolic and end-systolic volumes were assessed using magnetic resonance imaging (MRI). Infarct size and gene expression analysis were performed on Day 6 and 1 month. Histological changes, collagen volume fraction (CVF), and vascular density were also evaluated on postmortem sections. One month after the intervention, a 18.8% increase in LV ejection fraction (P= 0.007), and significant reductions in LV end-systolic (P= 0.009) and LV end-diastolic volumes (P= 0.03) were found in treated animals compared with the control-MI group. At Day 6, histopathology confirmed a significant infarct size reduction (P= 0.018), the presence of vascular connections at the flap-myocardium interface, and less apoptosis in the infarct border zone compared with control animals (P< 0.001). Up-regulation of genes involved in cell cycle progression, cellular growth and proliferation, and angiogenesis were identified within the flap. CONCLUSIONS Our results indicate that a vascular fat flap exerts beneficial effects on LV function and limits myocardial remodelling. Future studies must confirm whether these findings provide an alternative therapeutic approach for myocardial salvage after infarction.


Journal of Cellular and Molecular Medicine | 2013

Bioluminescence imaging: a shining future for cardiac regeneration

Santiago Roura; Carolina Gálvez-Montón; Antoni Bayes-Genis

Advances in bioanalytical techniques have become crucial for both basic research and medical practice. One example, bioluminescence imaging (BLI), is based on the application of natural reactants with light‐emitting capabilities (photoproteins and luciferases) isolated from a widespread group of organisms. The main challenges in cardiac regeneration remain unresolved, but a vast number of studies have harnessed BLI with the discovery of aequorin and green fluorescent proteins. First described in the luminous hydromedusan Aequorea victoria in the early 1960s, bioluminescent proteins have greatly contributed to the design and initiation of ongoing cell‐based clinical trials on cardiovascular diseases. In conjunction with advances in reporter gene technology, BLI provides valuable information about the location and functional status of regenerative cells implanted into numerous animal models of disease. The purpose of this review was to present the great potential of BLI, among other existing imaging modalities, to refine effectiveness and underlying mechanisms of cardiac cell therapy. We recount the first discovery of natural primary compounds with light‐emitting capabilities, and follow their applications to bioanalysis. We also illustrate insights and perspectives on BLI to illuminate current efforts in cardiac regeneration, where the future is bright.


International Journal of Cardiology | 2013

Cardiac adipose tissue: A new frontier for cardiac regeneration?

Antoni Bayes-Genis; Carolina Gálvez-Montón; Cristina Prat-Vidal; Carolina Soler-Botija

The human heart has limited regenerative capacity. We focused on cardiac adipose tissue as a source of progenitor cells and biological matrix material for salvaging injured myocardium. First, a population of human adult mesenchymal-like progenitors derived from cardiac adipose tissue, with inherent cardiac and endothelial cell potential, was identified and characterized. Next, a salvage strategy was tested, where a pericardial-derived, vascularized, adipose flap was used to cover oxygen-deprived myocardium in a porcine model. The fat flap reduced the myocardial scar size, in both acute and chronic infarcts. A human clinical trial to examine this novel intervention is currently underway.


International Journal of Cardiology | 2014

Online monitoring of myocardial bioprosthesis for cardiac repair

Cristina Prat-Vidal; Carolina Gálvez-Montón; Verónica Puig-Sanvicens; Benjamin Sanchez; Idoia Díaz-Güemes; Paco Bogónez-Franco; Isaac Perea-Gil; Anna Casas-Solà; Santiago Roura; Aida Llucià-Valldeperas; Carolina Soler-Botija; Francisco M. Sánchez-Margallo; Carlos E. Semino; Ramon Bragós; Antoni Bayes-Genis

BACKGROUND/OBJECTIVES The aim of this study was to develop a myocardial bioprosthesis for cardiac repair with an integrated online monitoring system. Myocardial infarction (MI) causes irreversible myocyte loss and scar formation. Tissue engineering to reduce myocardial scar size has been tested with variable success, yet scar formation and modulation by an engineered graft is incompletely characterized. METHODS Decellularized human pericardium was embedded using self-assembling peptide RAD16-I with or without GFP-labeled mediastinal adipose tissue-derived progenitor cells (MATPCs). Resulting bioprostheses were implanted over the ischemic myocardium in the swine model of MI (n=8 treated and n=5 control animals). For in vivo electrical impedance spectroscopy (EIS) monitoring, two electrodes were anchored to construct edges, covered by NanoGold particles and connected to an impedance-based implantable device. Histological evaluation was performed to identify and characterize GFP cells on post mortem myocardial sections. RESULTS Pluripotency, cardiomyogenic and endothelial potential and migratory capacity of porcine-derived MATPCs were demonstrated in vitro. Decellularization protocol efficiency, biodegradability, as well as in vitro biocompatibility after recellularization were also verified. One month after myocardial bioprosthesis implantation, morphometry revealed a 36% reduction in infarct area, Ki67(+)-GFP(+)-MATPCs were found at infarct core and border zones, and bioprosthesis vascularization was confirmed by presence of Griffonia simplicifolia lectin I (GSLI) B4 isolectin(+)-GFP(+)-MATPCs. Electrical impedance measurement at low and high frequencies (10 kHz-100 kHz) allowed online monitoring of scar maturation. CONCLUSIONS With clinical translation as ultimate goal, this myocardial bioprosthesis holds promise to be a viable candidate for human cardiac repair.


International Journal of Cardiology | 2013

Post-infarction scar coverage using a pericardial-derived vascular adipose flap. Pre-clinical results

Carolina Gálvez-Montón; Cristina Prat-Vidal; Santiago Roura; Carolina Soler-Botija; Aida Llucià-Valldeperas; Idoia Díaz-Güemes; Francisco M. Sánchez-Margallo; Antoni Bayes-Genis

BACKGROUND Myocardial salvage after coverage with a fat flap was recently demonstrated in acute coronary occlusion. The effect of this novel therapeutic strategy on a chronic myocardial scar is unknown. METHODS Myocardial infarction (MI) was induced by coil deployment in the mid circumflex artery in the swine model. Two weeks after infarction, a pericardial-derived adipose flap was transposed, fully covering the scar, in the treated group. Infarct size and histopathology were analyzed on post mortem sections. To assess cell migration, adenoviral eGFP vectors were injected in the adipose flap and expression was evaluated upon sacrifice both at the flap and myocardium. Magnetic resonance imaging (MRI) was used to measure left ventricular (LV) ejection fraction and ventricular volumes at baseline, 2 weeks post-MI, and at 6 weeks. RESULTS One month after flap transposition, histopathology confirmed a 34% reduction in infarct size (8.7% vs. 5.7%; P=0.04) and the presence of vascular connections at the flap-myocardium interface. High eGFP expression was detected at the infarct core both at the gene and protein level (negligible signal was detected at the flap on sacrifice). At the functional level, changes in LV ejection fraction and volumes (end-systolic and end-diastolic) were not significantly different between groups (all P values>0.1). CONCLUSIONS Our data support the use of post-infarction scar coverage with a pericardial-derived fat flap to reduce infarct size, due partly to neovascular connections and cell trafficking at the flap-myocardium interface. Further studies are needed to validate the functional and clinical relevance of this intervention.


Theranostics | 2017

Nanosized UCMSC-derived extracellular vesicles but not conditioned medium exclusively inhibit the inflammatory response of stimulated T cells: implications for nanomedicine

Marta Monguió-Tortajada; Santiago Roura; Carolina Gálvez-Montón; Josep Maria Pujal; Gemma Aran; Lucía Sanjurjo; Marcel·la Franquesa; Maria-Rosa Sarrias; Antoni Bayes-Genis; Francesc E. Borràs

Undesired immune responses have drastically hampered outcomes after allogeneic organ transplantation and cell therapy, and also lead to inflammatory diseases and autoimmunity. Umbilical cord mesenchymal stem cells (UCMSCs) have powerful regenerative and immunomodulatory potential, and their secreted extracellular vesicles (EVs) are envisaged as a promising natural source of nanoparticles to increase outcomes in organ transplantation and control inflammatory diseases. However, poor EV preparations containing highly-abundant soluble proteins may mask genuine vesicular-associated functions and provide misleading data. Here, we used Size-Exclusion Chromatography (SEC) to successfully isolate EVs from UCMSCs-conditioned medium. These vesicles were defined as positive for CD9, CD63, CD73 and CD90, and their size and morphology characterized by NTA and cryo-EM. Their immunomodulatory potential was determined in polyclonal T cell proliferation assays, analysis of cytokine profiles and in the skewing of monocyte polarization. In sharp contrast to the non-EV containing fractions, to the complete conditioned medium and to ultracentrifuged pellet, SEC-purified EVs from UCMSCs inhibited T cell proliferation, resembling the effect of parental UCMSCs. Moreover, while SEC-EVs did not induce cytokine response, the non-EV fractions, conditioned medium and ultracentrifuged pellet promoted the secretion of pro-inflammatory cytokines by polyclonally stimulated T cells and supported Th17 polarization. In contrast, EVs did not induce monocyte polarization, but the non-EV fraction induced CD163 and CD206 expression and TNF-α production in monocytes. These findings increase the growing evidence confirming that EVs are an active component of MSCs paracrine immunosuppressive function and affirm their potential for therapeutics in nanomedicine. In addition, our results highlight the importance of well-purified and defined preparations of MSC-derived EVs to achieve the immunosuppressive effect.


Stem Cells Translational Medicine | 2015

Postinfarction Functional Recovery Driven by a Three-Dimensional Engineered Fibrin Patch Composed of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells

Santiago Roura; Carolina Soler-Botija; Juli R. Bagó; Aida Llucià-Valldeperas; Marco A. Fernández; Carolina Gálvez-Montón; Cristina Prat-Vidal; Isaac Perea-Gil; Jerónimo Blanco; Antoni Bayes-Genis

Considerable research has been dedicated to restoring myocardial cell slippage and limiting ventricular remodeling after myocardial infarction (MI). We examined the ability of a three‐dimensional (3D) engineered fibrin patch filled with human umbilical cord blood‐derived mesenchymal stem cells (UCBMSCs) to induce recovery of cardiac function after MI. The UCBMSCs were modified to coexpress luciferase and fluorescent protein reporters, mixed with fibrin, and applied as an adhesive, viable construct (fibrin‐cell patch) over the infarcted myocardium in mice (MI‐UCBMSC group). The patch adhered well to the heart. Noninvasive bioluminescence imaging demonstrated early proliferation and differentiation of UCBMSCs within the construct in the postinfarct mice in the MI‐UCBMSC group. The implanted cells also participated in the formation of new, functional microvasculature that connected the fibrin‐cell patch to both the subjacent myocardial tissue and the host circulatory system. As revealed by echocardiography, the left ventricular ejection fraction and fractional shortening at sacrifice were improved in MI‐UCBMSC mice and were markedly reduced in mice treated with fibrin alone and untreated postinfarction controls. In conclusion, a 3D engineered fibrin patch composed of UCBMSCs attenuated infarct‐derived cardiac dysfunction when transplanted locally over a myocardial wound.


Stem Cell Research & Therapy | 2015

The role and potential of umbilical cord blood in an era of new therapies: a review

Santiago Roura; Josep-Maria Pujal; Carolina Gálvez-Montón; Antoni Bayes-Genis

In light of pioneering findings in the 1980s and an estimation of more than 130 million global annual births, umbilical cord blood (UCB) is considered to be the most plentiful reservoir of cells and to have regenerative potential for many clinical applications. Although UCB is used mainly against blood disorders, the spectrum of diseases for which it provides effective therapy has been expanded to include non-hematopoietic conditions; UCB has also been used as source for regenerative cell therapy and immune modulation. Thus, collection and banking of UCB-derived cells have become a popular option. However, there are questions regarding the cost versus the benefits of UCB banking, and it also raises complex ethical and legal issues. This review discusses many issues surrounding the conservation of UCB-derived cells and the great potential and current clinical applications of UCB in an era of new therapies. In particular, we describe the practical issues inherent in UCB collection, processing, and long-term storage as well as the different types of ‘stem’ or progenitor cells circulating in UCB and their uses in multiple clinical settings. Given these considerations, the trend toward UCB will continue to provide growing assistance to health care worldwide.

Collaboration


Dive into the Carolina Gálvez-Montón's collaboration.

Top Co-Authors

Avatar

Antoni Bayes-Genis

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Santiago Roura

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Carolina Soler-Botija

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Cristina Prat-Vidal

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Ramon Bragós

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Vicenta Llorente-Cortés

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Josep Lupón

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Lina Badimon

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Benjamin Sanchez

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge