Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carolina Perez-Iratxeta is active.

Publication


Featured researches published by Carolina Perez-Iratxeta.


Nature Genetics | 2002

Association of genes to genetically inherited diseases using data mining.

Carolina Perez-Iratxeta; Peer Bork; Miguel A. Andrade

Although approximately one-quarter of the roughly 4,000 genetically inherited diseases currently recorded in respective databases (LocusLink, OMIM) are already linked to a region of the human genome, about 450 have no known associated gene. Finding disease-related genes requires laborious examination of hundreds of possible candidate genes (sometimes, these are not even annotated; see, for example, refs 3,4). The public availability of the human genome draft sequence has fostered new strategies to map molecular functional features of gene products to complex phenotypic descriptions, such as those of genetically inherited diseases. Owing to recent progress in the systematic annotation of genes using controlled vocabularies, we have developed a scoring system for the possible functional relationships of human genes to 455 genetically inherited diseases that have been mapped to chromosomal regions without assignment of a particular gene. In a benchmark of the system with 100 known disease-associated genes, the disease-associated gene was among the 8 best-scoring genes with a 25% chance, and among the best 30 genes with a 50% chance, showing that there is a relationship between the score of a gene and its likelihood of being associated with a particular disease. The scoring also indicates that for some diseases, the chance of identifying the underlying gene is higher.


BMC Structural Biology | 2008

K2D2: Estimation of protein secondary structure from circular dichroism spectra

Carolina Perez-Iratxeta; Miguel A. Andrade-Navarro

BackgroundCircular dichroism spectroscopy is a widely used technique to analyze the secondary structure of proteins in solution. Predictive methods use the circular dichroism spectra from proteins of known tertiary structure to assess the secondary structure contents of a protein with unknown structure given its circular dichroism spectrum.ResultsWe developed K2D2, a method with an associated web server to estimate protein secondary structure from circular dichroism spectra. The method uses a self-organized map of spectra from proteins with known structure to deduce a map of protein secondary structure that is used to do the predictions.ConclusionThe K2D2 server is publicly accessible at http://www.ogic.ca/projects/k2d2/. It accepts as input a circular dichroism spectrum and outputs the estimated secondary structure content (alpha-helix and beta-strand) of the corresponding protein, as well as an estimated measure of error.


BMC Genetics | 2005

G2D: a tool for mining genes associated with disease

Carolina Perez-Iratxeta; Matthias Wjst; Peer Bork; Miguel A. Andrade

BackgroundHuman inherited diseases can be associated by genetic linkage with one or more genomic regions. The availability of the complete sequence of the human genome allows examining those locations for an associated gene. We previously developed an algorithm to prioritize genes on a chromosomal region according to their possible relation to an inherited disease using a combination of data mining on biomedical databases and gene sequence analysis.ResultsWe have implemented this method as a web application in our site G2D (Genes to Diseases). It allows users to inspect any region of the human genome to find candidate genes related to a genetic disease of their interest. In addition, the G2D server includes pre-computed analyses of candidate genes for 552 linked monogenic diseases without an associated gene, and the analysis of 18 asthma loci.ConclusionG2D can be publicly accessed at http://www.ogic.ca/projects/g2d_2/.


BMC Bioinformatics | 2003

Information extraction from full text scientific articles: Where are the keywords?

Parantu K. Shah; Carolina Perez-Iratxeta; Peer Bork; Miguel A. Andrade

BackgroundTo date, many of the methods for information extraction of biological information from scientific articles are restricted to the abstract of the article. However, full text articles in electronic version, which offer larger sources of data, are currently available. Several questions arise as to whether the effort of scanning full text articles is worthy, or whether the information that can be extracted from the different sections of an article can be relevant.ResultsIn this work we addressed those questions showing that the keyword content of the different sections of a standard scientific article (abstract, introduction, methods, results, and discussion) is very heterogeneous.ConclusionsAlthough the abstract contains the best ratio of keywords per total of words, other sections of the article may be a better source of biologically relevant data.


PLOS Biology | 2005

Systematic Association of Genes to Phenotypes by Genome and Literature Mining

Jan O. Korbel; Tobias Doerks; Lars Juhl Jensen; Carolina Perez-Iratxeta; Szymon Kaczanowski; Sean D. Hooper; Miguel A. Andrade; Peer Bork

One of the major challenges of functional genomics is to unravel the connection between genotype and phenotype. So far no global analysis has attempted to explore those connections in the light of the large phenotypic variability seen in nature. Here, we use an unsupervised, systematic approach for associating genes and phenotypic characteristics that combines literature mining with comparative genome analysis. We first mine the MEDLINE literature database for terms that reflect phenotypic similarities of species. Subsequently we predict the likely genomic determinants: genes specifically present in the respective genomes. In a global analysis involving 92 prokaryotic genomes we retrieve 323 clusters containing a total of 2,700 significant gene–phenotype associations. Some clusters contain mostly known relationships, such as genes involved in motility or plant degradation, often with additional hypothetical proteins associated with those phenotypes. Other clusters comprise unexpected associations; for example, a group of terms related to food and spoilage is linked to genes predicted to be involved in bacterial food poisoning. Among the clusters, we observe an enrichment of pathogenicity-related associations, suggesting that the approach reveals many novel genes likely to play a role in infectious diseases.


Human Molecular Genetics | 2011

miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock

Matías Alvarez-Saavedra; Ghadi Antoun; Akiko Yanagiya; Reynaldo Oliva-Hernandez; Daniel Cornejo-Palma; Carolina Perez-Iratxeta; Nahum Sonenberg; Hai-Ying M. Cheng

Mammalian circadian rhythms are synchronized to the external time by daily resetting of the suprachiasmatic nucleus (SCN) in response to light. As the master circadian pacemaker, the SCN coordinates the timing of diverse cellular oscillators in multiple tissues. Aberrant regulation of clock timing is linked to numerous human conditions, including cancer, cardiovascular disease, obesity, various neurological disorders and the hereditary disorder familial advanced sleep phase syndrome. Additionally, mechanisms that underlie clock resetting factor into the sleep and physiological disturbances experienced by night-shift workers and travelers with jet lag. The Ca(2+)/cAMP response element-binding protein-regulated microRNA, miR-132, is induced by light within the SCN and attenuates its capacity to reset, or entrain, the clock. However, the specific targets that are regulated by miR-132 and underlie its effects on clock entrainment remained elusive until now. Here, we show that genes involved in chromatin remodeling (Mecp2, Ep300, Jarid1a) and translational control (Btg2, Paip2a) are direct targets of miR-132 in the mouse SCN. Coordinated regulation of these targets underlies miR-132-dependent modulation of Period gene expression and clock entrainment: the mPer1 and mPer2 promoters are bound to and transcriptionally activated by MeCP2, whereas PAIP2A and BTG2 suppress the translation of the PERIOD proteins by enhancing mRNA decay. We propose that miR-132 is selectively enriched for chromatin- and translation-associated target genes and is an orchestrator of chromatin remodeling and protein translation within the SCN clock, thereby fine-tuning clock entrainment. These findings will further our understanding of mechanisms governing clock entrainment and its involvement in human diseases.


BMC Genomics | 2007

Gene function in early mouse embryonic stem cell differentiation

Kagnew Hailesellasse Sene; Christopher J. H. Porter; Gareth A. Palidwor; Carolina Perez-Iratxeta; Enrique M. Muro; Pearl A. Campbell; Michael A. Rudnicki; Miguel A. Andrade-Navarro

BackgroundLittle is known about the genes that drive embryonic stem cell differentiation. However, such knowledge is necessary if we are to exploit the therapeutic potential of stem cells. To uncover the genetic determinants of mouse embryonic stem cell (mESC) differentiation, we have generated and analyzed 11-point time-series of DNA microarray data for three biologically equivalent but genetically distinct mESC lines (R1, J1, and V6.5) undergoing undirected differentiation into embryoid bodies (EBs) over a period of two weeks.ResultsWe identified the initial 12 hour period as reflecting the early stages of mESC differentiation and studied probe sets showing consistent changes of gene expression in that period. Gene function analysis indicated significant up-regulation of genes related to regulation of transcription and mRNA splicing, and down-regulation of genes related to intracellular signaling. Phylogenetic analysis indicated that the genes showing the largest expression changes were more likely to have originated in metazoans. The probe sets with the most consistent gene changes in the three cell lines represented 24 down-regulated and 12 up-regulated genes, all with closely related human homologues. Whereas some of these genes are known to be involved in embryonic developmental processes (e.g. Klf4, Otx2, Smn1, Socs3, Tagln, Tdgf1), our analysis points to others (such as transcription factor Phf21a, extracellular matrix related Lama1 and Cyr61, or endoplasmic reticulum related Sc4mol and Scd2) that have not been previously related to mESC function. The majority of identified functions were related to transcriptional regulation, intracellular signaling, and cytoskeleton. Genes involved in other cellular functions important in ESC differentiation such as chromatin remodeling and transmembrane receptors were not observed in this set.ConclusionOur analysis profiles for the first time gene expression at a very early stage of mESC differentiation, and identifies a functional and phylogenetic signature for the genes involved. The data generated constitute a valuable resource for further studies. All DNA microarray data used in this study are available in the StemBase database of stem cell gene expression data [1] and in the NCBIs GEO database.


The EMBO Journal | 2011

Differential genomic targeting of the transcription factor TAL1 in alternate haematopoietic lineages

Carmen G. Palii; Carolina Perez-Iratxeta; Zizhen Yao; Yi Cao; Fengtao Dai; Jerry Davison; Harold Atkins; David S. Allan; F. Jeffrey Dilworth; Robert Gentleman; Stephen J. Tapscott; Marjorie Brand

TAL1/SCL is a master regulator of haematopoiesis whose expression promotes opposite outcomes depending on the cell type: differentiation in the erythroid lineage or oncogenesis in the T‐cell lineage. Here, we used a combination of ChIP sequencing and gene expression profiling to compare the function of TAL1 in normal erythroid and leukaemic T cells. Analysis of the genome‐wide binding properties of TAL1 in these two haematopoietic lineages revealed new insight into the mechanism by which transcription factors select their binding sites in alternate lineages. Our study shows limited overlap in the TAL1‐binding profile between the two cell types with an unexpected preference for ETS and RUNX motifs adjacent to E‐boxes in the T‐cell lineage. Furthermore, we show that TAL1 interacts with RUNX1 and ETS1, and that these transcription factors are critically required for TAL1 binding to genes that modulate T‐cell differentiation. Thus, our findings highlight a critical role of the cellular environment in modulating transcription factor binding, and provide insight into the mechanism by which TAL1 inhibits differentiation leading to oncogenesis in the T‐cell lineage.


The EMBO Journal | 2011

Constitutive heterochromatin reorganization during somatic cell reprogramming

Eden Fussner; Ugljesa Djuric; Mike Strauss; Akitsu Hotta; Carolina Perez-Iratxeta; Fredrik Lanner; F. Jeffrey Dilworth; James Ellis; David P. Bazett-Jones

Induced pluripotent stem (iPS) cell reprogramming is a gradual epigenetic process that reactivates the pluripotent transcriptional network by erasing and establishing repressive epigenetic marks. In contrast to loci‐specific epigenetic changes, heterochromatin domains undergo epigenetic resetting during the reprogramming process, but the effect on the heterochromatin ultrastructure is not known. Here, we characterize the physical structure of heterochromatin domains in full and partial mouse iPS cells by correlative electron spectroscopic imaging. In somatic and partial iPS cells, constitutive heterochromatin marked by H3K9me3 is highly compartmentalized into chromocentre structures of densely packed chromatin fibres. In contrast, chromocentre boundaries are poorly defined in pluripotent embryonic stem and full iPS cells, and are characterized by unusually dispersed 10 nm heterochromatin fibres in high Nanog‐expressing cells, including pluripotent cells of the mouse blastocyst before differentiation. This heterochromatin reorganization accompanies retroviral silencing during conversion of partial iPS cells by MEK/GSK3 2i inhibitor treatment. Thus, constitutive heterochromatin is compacted in partial iPS cells but reorganizes into dispersed 10 nm chromatin fibres as the fully reprogrammed iPS cell state is acquired.


PLOS ONE | 2007

Oct4 targets regulatory nodes to modulate stem cell function.

Pearl A. Campbell; Carolina Perez-Iratxeta; Miguel A. Andrade-Navarro; Michael A. Rudnicki

Stem cells are characterized by two defining features, the ability to self-renew and to differentiate into highly specialized cell types. The POU homeodomain transcription factor Oct4 (Pou5f1) is an essential mediator of the embryonic stem cell state and has been implicated in lineage specific differentiation, adult stem cell identity, and cancer. Recent description of the regulatory networks which maintain ‘ES’ have highlighted a dual role for Oct4 in the transcriptional activation of genes required to maintain self-renewal and pluripotency while concomitantly repressing genes which facilitate lineage specific differentiation. However, the molecular mechanism by which Oct4 mediates differential activation or repression at these loci to either maintain stem cell identity or facilitate the emergence of alternate transcriptional programs required for the realization of lineage remains to be elucidated. To further investigate Oct4 function, we employed gene expression profiling together with a robust statistical analysis to identify genes highly correlated to Oct4. Gene Ontology analysis to categorize overrepresented genes has led to the identification of themes which may prove essential to stem cell identity, including chromatin structure, nuclear architecture, cell cycle control, DNA repair, and apoptosis. Our experiments have identified previously unappreciated roles for Oct4 for firstly, regulating chromatin structure in a state consistent with self-renewal and pluripotency, and secondly, facilitating the expression of genes that keeps the cell poised to respond to cues that lead to differentiation. Together, these data define the mechanism by which Oct4 orchestrates cellular regulatory pathways to enforce the stem cell state and provides important insight into stem cell function and cancer.

Collaboration


Dive into the Carolina Perez-Iratxeta's collaboration.

Top Co-Authors

Avatar

Miguel A. Andrade

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peer Bork

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar

Gareth A. Palidwor

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enrique M. Muro

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul M. Krzyzanowski

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmen G. Palii

Ottawa Hospital Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge