Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carolina Trujillo is active.

Publication


Featured researches published by Carolina Trujillo.


PLOS Pathogens | 2013

Glucose phosphorylation is required for Mycobacterium tuberculosis persistence in mice.

Joeli Marrero; Carolina Trujillo; Kyu Y. Rhee; Sabine Ehrt

Mycobacterium tuberculosis (Mtb) is thought to preferentially rely on fatty acid metabolism to both establish and maintain chronic infections. Its metabolic network, however, allows efficient co-catabolism of multiple carbon substrates. To gain insight into the importance of carbohydrate substrates for Mtb pathogenesis we evaluated the role of glucose phosphorylation, the first reaction in glycolysis. We discovered that Mtb expresses two functional glucokinases. Mtb required the polyphosphate glucokinase PPGK for normal growth on glucose, while its second glucokinase GLKA was dispensable. 13C-based metabolomic profiling revealed that both enzymes are capable of incorporating glucose into Mtbs central carbon metabolism, with PPGK serving as dominant glucokinase in wild type (wt) Mtb. When both glucokinase genes, ppgK and glkA, were deleted from its genome, Mtb was unable to use external glucose as substrate for growth or metabolism. Characterization of the glucokinase mutants in mouse infections demonstrated that glucose phosphorylation is dispensable for establishing infection in mice. Surprisingly, however, the glucokinase double mutant failed to persist normally in lungs, which suggests that Mtb has access to glucose in vivo and relies on glucose phosphorylation to survive during chronic mouse infections.


PLOS ONE | 2010

Simultaneous Analysis of Multiple Mycobacterium tuberculosis Knockdown Mutants In Vitro and In Vivo

Antje Blumenthal; Carolina Trujillo; Sabine Ehrt; Dirk Schnappinger

Mycobacterium tuberculosis (Mtb) represents one of the most persistent bacterial threats to human health and new drugs are needed to limit its impact. Conditional knockdown mutants can help validate new drug targets, but the analysis of individual mutants is laborious and time consuming. Here, we describe quantitative DNA tags (qTags) and their use to simultaneously analyze conditional Mtb knockdown mutants that allowed silencing the glyoxylate and methylcitrate cycles (via depletion of isocitrate lyase, ICL), the serine protease Rv3671c, and the core subunits of the mycobacterial proteasome, PrcB and PrcA. The impact of gene silencing in multi-strain cultures was determined by measuring the relative abundance of mutant-specific qTags with real-time PCR. This achieved accurate quantification over a broad range of qTag abundances and depletion of ICL, Rv3671c, or PrcBA resulted in the expected impairment of growth of Mtb with butyrate as the primary carbon source, survival during oxidative stress, acid stress and starvation. The impact of depleting ICL, Rv3671c, or PrcBA in multi-strain mouse infections was analyzed with two approaches. We first measured the relative abundance of mutant-specific qTags in total chromosomal DNA isolated from bacteria that were recovered from infected lungs on agar plates. We then developed a two-step amplification procedure, which allowed us to measure the abundances of individual mutants directly in infected lung tissue. Both strategies confirmed that inactivation of Rv3671c and PrcBA severely reduced persistence of Mtb in mice. The multi-strain infections furthermore suggested that silencing ICL not only prevented growth of Mtb during acute infections but also prevented survival of Mtb during chronic infections. Analyses of the ICL knockdown mutant in single-strain infections confirmed this and demonstrated that silencing of ICL during chronic infections impaired persistence of Mtb to the extent that the pathogen was cleared from the lungs of most mice.


Proceedings of the National Academy of Sciences of the United States of America | 2014

An outer membrane channel protein of Mycobacterium tuberculosis with exotoxin activity

Olga Danilchanka; Jim Sun; Mikhail Pavlenok; Christian Maueröder; Alexander Speer; Axel Siroy; Joeli Marrero; Carolina Trujillo; David L. Mayhew; Kathryn S. Doornbos; Luis E. Munoz; Martin Herrmann; Sabine Ehrt; Christian Berens; Michael Niederweis

Significance The mechanisms that enable Mycobacterium tuberculosis, the causative agent of tuberculosis, to resist drug treatment and survive the immune response are poorly understood. In this study we discovered that M. tuberculosis produces the protein channel protein with necrosis-inducing toxin (CpnT), which forms a channel in the outer membrane and releases a toxic domain into the extracellular milieu. This toxin has no similarity to known bacterial toxins and kills eukaryotic cells by necrosis, suggesting that it is required for escape of M. tuberculosis from macrophages and for dissemination. The channel domain of CpnT is used for uptake of nutrients across the outer membrane. Taken together, CpnT is a protein with functions in two fundamental processes in M. tuberculosis physiology: nutrient acquisition and control of host cell death. The ability to control the timing and mode of host cell death plays a pivotal role in microbial infections. Many bacteria use toxins to kill host cells and evade immune responses. Such toxins are unknown in Mycobacterium tuberculosis. Virulent M. tuberculosis strains induce necrotic cell death in macrophages by an obscure molecular mechanism. Here we show that the M. tuberculosis protein Rv3903c (channel protein with necrosis-inducing toxin, CpnT) consists of an N-terminal channel domain that is used for uptake of nutrients across the outer membrane and a secreted toxic C-terminal domain. Infection experiments revealed that CpnT is required for survival and cytotoxicity of M. tuberculosis in macrophages. Furthermore, we demonstrate that the C-terminal domain of CpnT causes necrotic cell death in eukaryotic cells. Thus, CpnT has a dual function in uptake of nutrients and induction of host cell death by M. tuberculosis.


PLOS Pathogens | 2014

Inactivation of Fructose-1,6-Bisphosphate Aldolase Prevents Optimal Co-catabolism of Glycolytic and Gluconeogenic Carbon Substrates in Mycobacterium tuberculosis

Susan Puckett; Carolina Trujillo; Hyungjin Eoh; Joeli Marrero; John S. Spencer; Mary Jackson; Dirk Schnappinger; Kyu Y. Rhee; Sabine Ehrt

Metabolic pathways used by Mycobacterium tuberculosis (Mtb) to establish and maintain infections are important for our understanding of pathogenesis and the development of new chemotherapies. To investigate the role of fructose-1,6-bisphosphate aldolase (FBA), we engineered an Mtb strain in which FBA levels were regulated by anhydrotetracycline. Depletion of FBA resulted in clearance of Mtb in both the acute and chronic phases of infection in vivo, and loss of viability in vitro when cultured on single carbon sources. Consistent with prior reports of Mtbs ability to co-catabolize multiple carbon sources, this in vitro essentiality could be overcome when cultured on mixtures of glycolytic and gluconeogenic carbon sources, enabling generation of an fba knockout (Δfba). In vitro studies of Δfba however revealed that lack of FBA could only be compensated for by a specific balance of glucose and butyrate in which growth and metabolism of butyrate were determined by Mtbs ability to co-catabolize glucose. These data thus not only evaluate FBA as a potential drug target in both replicating and persistent Mtb, but also expand our understanding of the multiplicity of in vitro conditions that define the essentiality of Mtbs FBA in vivo.


Mbio | 2014

Triosephosphate Isomerase Is Dispensable In Vitro yet Essential for Mycobacterium tuberculosis To Establish Infection

Carolina Trujillo; Antje Blumenthal; Joeli Marrero; Kyu Y. Rhee; Dirk Schnappinger; Sabine Ehrt

ABSTRACT Triosephosphate isomerase (TPI) catalyzes the interconversion of dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P). This reaction is required for glycolysis and gluconeogenesis, and tpi has been predicted to be essential for growth of Mycobacterium tuberculosis. However, when studying a conditionally regulated tpi knockdown mutant, we noticed that depletion of TPI reduced growth of M. tuberculosis in media containing a single carbon source but not in media that contained both a glycolytic and a gluconeogenic carbon source. We used such two-carbon-source media to isolate a tpi deletion (Δtpi) mutant. The Δtpi mutant did not survive with single carbon substrates but grew like wild-type (WT) M. tuberculosis in the presence of both a glycolytic and a gluconeogenic carbon source. 13C metabolite tracing revealed the accumulation of TPI substrates in Δtpi and the absence of alternative triosephosphate isomerases and metabolic bypass reactions, which confirmed the requirement of TPI for glycolysis and gluconeogenesis in M. tuberculosis. The Δtpi strain was furthermore severely attenuated in the mouse model of tuberculosis, suggesting that M. tuberculosis cannot simultaneously access sufficient quantities of glycolytic and gluconeogenic carbon substrates to establish infection in mice. IMPORTANCE The importance of central carbon metabolism for the pathogenesis of M. tuberculosis has recently been recognized, but the consequences of depleting specific metabolic enzymes remain to be identified for many enzymes. We investigated triosephosphate isomerase (TPI) because it is central to both glycolysis and gluconeogenesis and had been predicted to be essential for growth of M. tuberculosis. This work identified metabolic conditions that make TPI dispensable for M. tuberculosis growth in culture and proved that M. tuberculosis relies on a single TPI enzyme and has no metabolic bypass for the TPI-dependent interconversion of dihydroxyacetone phosphate and glyceraldehyde-3-phosphate in glycolysis and gluconeogenesis. Finally, we demonstrate that TPI is essential for growth of the pathogen in mouse lungs. The importance of central carbon metabolism for the pathogenesis of M. tuberculosis has recently been recognized, but the consequences of depleting specific metabolic enzymes remain to be identified for many enzymes. We investigated triosephosphate isomerase (TPI) because it is central to both glycolysis and gluconeogenesis and had been predicted to be essential for growth of M. tuberculosis. This work identified metabolic conditions that make TPI dispensable for M. tuberculosis growth in culture and proved that M. tuberculosis relies on a single TPI enzyme and has no metabolic bypass for the TPI-dependent interconversion of dihydroxyacetone phosphate and glyceraldehyde-3-phosphate in glycolysis and gluconeogenesis. Finally, we demonstrate that TPI is essential for growth of the pathogen in mouse lungs.


ACS Infectious Diseases | 2016

Validation of CoaBC as a Bactericidal Target in the Coenzyme A Pathway of Mycobacterium tuberculosis

Joanna C. Evans; Carolina Trujillo; Zhe Wang; Hyungjin Eoh; Sabine Ehrt; Dirk Schnappinger; Helena I. Boshoff; Kyu Y. Rhee; Clifton E. Barry; Valerie Mizrahi

Mycobacterium tuberculosis relies on its own ability to biosynthesize coenzyme A to meet the needs of the myriad enzymatic reactions that depend on this cofactor for activity. As such, the essential pantothenate and coenzyme A biosynthesis pathways have attracted attention as targets for tuberculosis drug development. To identify the optimal step for coenzyme A pathway disruption in M. tuberculosis, we constructed and characterized a panel of conditional knockdown mutants in coenzyme A pathway genes. Here, we report that silencing of coaBC was bactericidal in vitro, whereas silencing of panB, panC, or coaE was bacteriostatic over the same time course. Silencing of coaBC was likewise bactericidal in vivo, whether initiated at infection or during either the acute or chronic stages of infection, confirming that CoaBC is required for M. tuberculosis to grow and persist in mice and arguing against significant CoaBC bypass via transport and assimilation of host-derived pantetheine in this animal model. These results provide convincing genetic validation of CoaBC as a new bactericidal drug target.


PLOS Pathogens | 2016

Mycobacterium tuberculosis Thioredoxin Reductase Is Essential for Thiol Redox Homeostasis but Plays a Minor Role in Antioxidant Defense.

Kan Lin; Kathryn O'Brien; Carolina Trujillo; Ruojun Wang; Joshua B. Wallach; Dirk Schnappinger; Sabine Ehrt

Mycobacterium tuberculosis (Mtb) must cope with exogenous oxidative stress imposed by the host. Unlike other antioxidant enzymes, Mtb’s thioredoxin reductase TrxB2 has been predicted to be essential not only to fight host defenses but also for in vitro growth. However, the specific physiological role of TrxB2 and its importance for Mtb pathogenesis remain undefined. Here we show that genetic inactivation of thioredoxin reductase perturbed several growth-essential processes, including sulfur and DNA metabolism and rapidly killed and lysed Mtb. Death was due to cidal thiol-specific oxidizing stress and prevented by a disulfide reductant. In contrast, thioredoxin reductase deficiency did not significantly increase susceptibility to oxidative and nitrosative stress. In vivo targeting TrxB2 eradicated Mtb during both acute and chronic phases of mouse infection. Deliberately leaky knockdown mutants identified the specificity of TrxB2 inhibitors and showed that partial inactivation of TrxB2 increased Mtb’s susceptibility to rifampicin. These studies reveal TrxB2 as essential thiol-reducing enzyme in Mtb in vitro and during infection, establish the value of targeting TrxB2, and provide tools to accelerate the development of TrxB2 inhibitors.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Glyoxylate detoxification is an essential function of malate synthase required for carbon assimilation in Mycobacterium tuberculosis

Susan Puckett; Carolina Trujillo; Zhe Wang; Hyungjin Eoh; Thomas R. Ioerger; Inna Krieger; James C. Sacchettini; Dirk Schnappinger; Kyu Y. Rhee; Sabine Ehrt

Significance A better understanding of essential processes in Mycobacterium tuberculosis (Mtb) is required for the development of new chemotherapeutics. Isocitrate lyase (ICL) and malate synthase (MS) function in the glyoxylate shunt, a pathway required by Mtb to metabolize fatty acids (FAs). Here, we demonstrate that Mtb MS enables growth and survival on fatty acids through its ability to simultaneously detoxify a metabolic byproduct arising from the initial assimilation of acetyl coenzyme A (acetyl-CoA), glyoxylate, while assimilating a second molecule of acetyl-CoA. We further show that MS depletion during acute and chronic mouse infections kills Mtb. These studies expand our fundamental understanding of the glyoxylate shunt and biologically validate MS as an attractive drug target in Mtb. The glyoxylate shunt is a metabolic pathway of bacteria, fungi, and plants used to assimilate even-chain fatty acids (FAs) and has been implicated in persistence of Mycobacterium tuberculosis (Mtb). Recent work, however, showed that the first enzyme of the glyoxylate shunt, isocitrate lyase (ICL), may mediate survival of Mtb during the acute and chronic phases of infection in mice through physiologic functions apart from fatty acid metabolism. Here, we report that malate synthase (MS), the second enzyme of the glyoxylate shunt, is essential for in vitro growth and survival of Mtb on even-chain fatty acids, in part, for a previously unrecognized activity: mitigating the toxicity of glyoxylate excess arising from metabolism of even-chain fatty acids. Metabolomic profiling revealed that MS-deficient Mtb cultured on fatty acids accumulated high levels of the ICL aldehyde endproduct, glyoxylate, and increased levels of acetyl phosphate, acetoacetyl coenzyme A (acetoacetyl-CoA), butyryl CoA, acetoacetate, and β-hydroxybutyrate. These changes were indicative of a glyoxylate-induced state of oxaloacetate deficiency, acetate overload, and ketoacidosis. Reduction of intrabacterial glyoxylate levels using a chemical inhibitor of ICL restored growth of MS-deficient Mtb, despite inhibiting entry of carbon into the glyoxylate shunt. In vivo depletion of MS resulted in sterilization of Mtb in both the acute and chronic phases of mouse infection. This work thus identifies glyoxylate detoxification as an essential physiologic function of Mtb malate synthase and advances its validation as a target for drug development.


PLOS Pathogens | 2016

Trehalose-6-Phosphate-Mediated Toxicity Determines Essentiality of OtsB2 in Mycobacterium tuberculosis In Vitro and in Mice.

Jan Korte; Marina Alber; Carolina Trujillo; Karl Syson; Hendrik Koliwer-Brandl; René Deenen; Karl Köhrer; Michael A. DeJesus; Travis Hartman; William R. Jacobs; Stephen Bornemann; Thomas R. Ioerger; Sabine Ehrt; Rainer Kalscheuer

Trehalose biosynthesis is considered an attractive target for the development of antimicrobials against fungal, helminthic and bacterial pathogens including Mycobacterium tuberculosis. The most common biosynthetic route involves trehalose-6-phosphate (T6P) synthase OtsA and T6P phosphatase OtsB that generate trehalose from ADP/UDP-glucose and glucose-6-phosphate. In order to assess the drug target potential of T6P phosphatase, we generated a conditional mutant of M. tuberculosis allowing the regulated gene silencing of the T6P phosphatase gene otsB2. We found that otsB2 is essential for growth of M. tuberculosis in vitro as well as for the acute infection phase in mice following aerosol infection. By contrast, otsB2 is not essential for the chronic infection phase in mice, highlighting the substantial remodelling of trehalose metabolism during infection by M. tuberculosis. Blocking OtsB2 resulted in the accumulation of its substrate T6P, which appears to be toxic, leading to the self-poisoning of cells. Accordingly, blocking T6P production in a ΔotsA mutant abrogated otsB2 essentiality. T6P accumulation elicited a global upregulation of more than 800 genes, which might result from an increase in RNA stability implied by the enhanced neutralization of toxins exhibiting ribonuclease activity. Surprisingly, overlap with the stress response caused by the accumulation of another toxic sugar phosphate molecule, maltose-1-phosphate, was minimal. A genome-wide screen for synthetic lethal interactions with otsA identified numerous genes, revealing additional potential drug targets synergistic with OtsB2 suitable for combination therapies that would minimize the emergence of resistance to OtsB2 inhibitors.


bioRxiv | 2018

New inhibitors of Mycobacterium tuberculosis identified using systems chemical biology

Eachan O Johnson; Emily LaVerriere; Mary Stanley; Emma Office; Elisabeth Meyer; Tomohiko Kawate; James Gomez; Rebecca E. Audette; Nirmalya Bandyopadhyay; Natalia Betancourt; Kayla Delano; Israel Da Silva; Joshua Davis; Christina Gallo; Michelle Gardner; Aaron Golas; Kristine M. Guinn; Rebecca Korn; Jennifer A McConnell; Caitlin Moss; Kenan C. Murphy; Ray Nietupski; K. G. Papavinasasundaram; Jessica T. Pinkham; Paula A Pino; Megan K. Proulx; Nadine Ruecker; Naomi Song; Matthew Thompson; Carolina Trujillo

With the rise in antibiotic resistance, new drugs are desperately needed against Mycobacterium tuberculosis (Mtb). Combining chemistry and genetics, we developed a new strategy for rapidly identifying many new small molecule candidates against Mtb and shedding light on their mechanisms of action (MOA), by performing large-scale chemical screening on pooled genetic libraries containing >100 barcoded strains hypomorphic for individual essential genes. We created barcoded hypomorphic strains for 474 of the ∼∼ 625 essential genes in Mtb and developed a multiplexed, whole-cell assay to measure strain abundance. Applying the approach with an activity-enriched, 3226 compound library and an unbiased 47,353 compound library, we characterized >8.5 million chemical-genetic interactions. Using machine learning, we identified >40 novel compounds against known MOAs, including new inhibitors of DNA gyrase, mycolic acid biosynthesis, and folate biosynthesis. By identifying highly specific chemical-genetic interactions, we identified new inhibitors of RNA polymerase and of a novel target, EfpA. Finally, we showed an inhibitor discovered by screening the hypomorphic strains could be optimized by medicinal chemistry to be active against wild-type Mtb. The results demonstrate that a systems chemical biology approach can empower discovery, prioritization, and development of compounds towards novel TB therapeutics.New antibiotics are needed to combat rising resistance, with new Mycobacterium tuberculosis (Mtb) drugs of highest priority. Conventional whole-cell and biochemical antibiotic screens have failed. We developed a novel strategy termed PROSPECT (PRimary screening Of Strains to Prioritize Expanded Chemistry and Targets) in which we screen compounds against pools of strains depleted for essential bacterial targets. We engineered strains targeting 474 Mtb essential genes and screened pools of 100-150 strains against activity-enriched and unbiased compounds libraries, measuring > 8.5-million chemical-genetic interactions. Primary screens identified > 10-fold more hits than screening wild-type Mtb alone, with chemical-genetic interactions providing immediate, direct target insight. We identified > 40 novel compounds targeting DNA gyrase, cell wall, tryptophan, folate biosynthesis, and RNA polymerase, as well as inhibitors of a novel target EfpA. Chemical optimization yielded EfpA inhibitors with potent wild-type activity, thus demonstrating PROSPECT9s ability to yield inhibitors against novel targets which would have eluded conventional drug discovery.

Collaboration


Dive into the Carolina Trujillo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clifton E. Barry

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Helena I. Boshoff

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge