Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caroline A. Owen is active.

Publication


Featured researches published by Caroline A. Owen.


Journal of Leukocyte Biology | 1999

The cell biology of leukocyte-mediated proteolysis.

Caroline A. Owen; Edward J. Campbell

Leukocyte‐derived proteinases have the capacity to degrade every component of the extracellular matrix, and thereby play fundamental roles in physiological processes. However, if the activity of these proteinases is uncontrolled or dysregulated, they have the capacity to contribute to tissue injury that potentially affects every organ in the body. Although there is a substantial literature on structure and activity of these proteinases when they are free in solution, until recently there has been little information about the cell biology of proteinases and their inhibitors. Recent studies, however, have identified several mechanisms by which inflammatory cells can degrade extracellular proteins in a milieu that contains high‐affinity proteinase inhibitors. J. Leukoc. Biol. 65: 137–150; 1999.


The New England Journal of Medicine | 2015

Lung-Function Trajectories Leading to Chronic Obstructive Pulmonary Disease.

Peter Lange; Bartolome R. Celli; Alvar Agusti; Gorm Jensen; Miguel Divo; Rosa Faner; Stefano Guerra; Jacob Louis Marott; Fernando D. Martinez; Pablo Martínez-Camblor; Paula Meek; Caroline A. Owen; Hans Petersen; Victor Pinto-Plata; Peter Schnohr; Akshay Sood; Joan B. Soriano; Yohannes Tesfaigzi; Jørgen Vestbo

BACKGROUND Chronic obstructive pulmonary disease (COPD) is thought to result from an accelerated decline in forced expiratory volume in 1 second (FEV1) over time. Yet it is possible that a normal decline in FEV1 could also lead to COPD in persons whose maximally attained FEV1 is less than population norms. METHODS We stratified participants in three independent cohorts (the Framingham Offspring Cohort, the Copenhagen City Heart Study, and the Lovelace Smokers Cohort) according to lung function (FEV1 ≥80% or <80% of the predicted value) at cohort inception (mean age of patients, approximately 40 years) and the presence or absence of COPD at the last study visit. We then determined the rate of decline in FEV1 over time among the participants according to their FEV1 at cohort inception and COPD status at study end. RESULTS Among 657 persons who had an FEV1 of less than 80% of the predicted value before 40 years of age, 174 (26%) had COPD after 22 years of observation, whereas among 2207 persons who had a baseline FEV1 of at least 80% of the predicted value before 40 years of age, 158 (7%) had COPD after 22 years of observation (P<0.001). Approximately half the 332 persons with COPD at the end of the observation period had had a normal FEV1 before 40 years of age and had a rapid decline in FEV1 thereafter, with a mean (±SD) decline of 53±21 ml per year. The remaining half had had a low FEV1 in early adulthood and a subsequent mean decline in FEV1 of 27±18 ml per year (P<0.001), despite similar smoking exposure. CONCLUSIONS Our study suggests that low FEV1 in early adulthood is important in the genesis of COPD and that accelerated decline in FEV1 is not an obligate feature of COPD. (Funded by an unrestricted grant from GlaxoSmithKline and others.).


Journal of Immunology | 2004

Membrane-Bound Matrix Metalloproteinase-8 on Activated Polymorphonuclear Cells Is a Potent, Tissue Inhibitor of Metalloproteinase-Resistant Collagenase and Serpinase

Caroline A. Owen; Zhuma Hu; Carlos López-Otín; Steven D. Shapiro

Little is known about the cell biology or the biologic roles of polymorphonuclear cell (PMN)-derived matrix metalloproteinase-8 (MMP-8). When activated with proinflammatory mediators, human PMN release only ∼15–20% of their content of MMP-8 (∼60 ng/106 cells) exclusively as latent pro-MMP-8. However, activated PMN incubated on type I collagen are associated with pericellular collagenase activity even when bathed in serum. PMN pericellular collagenase activity is attributable to membrane-bound MMP-8 because: 1) MMP-8 is expressed in an inducible manner in both pro- and active forms on the surface of human PMN; 2) studies of activated PMN from mice genetically deficient in MMP-8 (MMP-8−/−) vs wild-type (WT) mice show that membrane-bound MMP-8 accounts for 92% of the MMP-mediated, PMN surface type I collagenase activity; and 3) human membrane-bound MMP-8 on PMN cleaves types I and II collagens, and α1-proteinase inhibitor, but is substantially resistant to inhibition by tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2. Binding of MMP-8 to the PMN surface promotes its stability because soluble MMP-8 has t1/2 = 7.5 h at 37°C, but membrane-bound MMP-8 retains >80% of its activity after incubation at 37°C for 18 h. Studies of MMP-8−/− vs WT mice given intratracheal LPS demonstrate that 24 h after intratracheal LPS, MMP-8−/− mice have 2-fold greater accumulation of PMN in the alveolar space than WT mice. Thus, MMP-8 has an unexpected, anti-inflammatory role during acute lung injury in mice. TIMP-resistant, active MMP-8 expressed on the surface of activated PMN is likely to be an important form of MMP-8, regulating lung inflammation and collagen turnover in vivo.


Journal of Immunology | 2007

CD8+ T Cells Are Required for Inflammation and Destruction in Cigarette Smoke-Induced Emphysema in Mice

Toshitaka Maeno; A. McGarry Houghton; Pablo A. Quintero; Sandra Grumelli; Caroline A. Owen; Steven D. Shapiro

Increased numbers of T lymphocytes are observed in the lungs of patients with chronic obstructive pulmonary disease, but their role in the disease process is not known. We investigated the role of CD8+ T cells in inflammatory cell recruitment and lung destruction in a cigarette smoke-induced murine model of emphysema. In contrast to wild-type C57BL/6J mice that displayed macrophage, lymphocyte, and neutrophil recruitment to the lung followed by emphysema in response to cigarette smoke, CD8+ T cell-deficient (CD8−/−) mice had a blunted inflammatory response and did not develop emphysema when exposed to long-term cigarette smoke. Further studies supported a pathogenetic pathway whereby the CD8+ T cell product, IFN-γ-inducible protein-10, induces production of macrophage elastase (matrix metalloproteinase 12) that degrades elastin, both causing lung destruction directly and generating elastin fragments that serve as monocyte chemokines augmenting macrophage-mediated lung destruction. These studies demonstrate a requirement for CD8+ T cells for the development of cigarette smoke-induced emphysema and they provide a unifying pathway whereby CD8+ T cells are a central regulator of the inflammatory network in chronic obstructive pulmonary disease.


Circulation | 2003

Neutrophil elastase in human atherosclerotic plaques: Production by macrophages

Clare M. Dollery; Caroline A. Owen; Galina K. Sukhova; Alexandra Krettek; Steven D. Shapiro; Peter Libby

Background—Catabolism of the extracellular matrix (ECM) contributes to vascular remodeling in health and disease. Although metalloenzymes and cysteinyl proteinases have garnered much attention in this regard, the role of serine-dependent proteinases in vascular ECM degradation during atherogenesis remains unknown. We recently discovered the presence of the metalloproteinase MMP-8, traditionally associated only with neutrophils, in atheroma-related cells. Human neutrophil elastase (NE) plays a critical role in lung disease, but the paucity of neutrophils in the atheromatous plaque has led to neglect of its potential role in vascular biology. NE can digest elastin, fibrillar and nonfibrillar collagens, and other ECM components in addition to its ability to modify lipoproteins and modulate cytokine and MMP activity. Methods and Results—Fibrous and atheromatous plaques but not normal arteries contained NE. In particular, NE abounded in the macrophage-rich shoulders of atheromatous plaques with histological features of vulnerability. Neutrophil elastase and macrophages colocalized in such vulnerable plaques (n=7). In situ hybridization revealed NE mRNA in macrophage-rich areas, indicating local production of this enzyme. Freshly isolated blood monocytes, monocyte-derived macrophages, and vascular endothelial cells in culture produced active NE and contained NE mRNA. Monocytes produced NE constitutively, with little regulation by cytokines IL-1&bgr;, TNF-&agr;, or IFN-&ggr; but released it when stimulated by CD40 ligand, a cytokine found in atheroma. Conclusions—These findings point to a novel role for the serine protease, neutrophil elastase, in matrix breakdown by macrophages, a critical process in adaptive remodeling of vessels and in the pathogenesis of arterial diseases.


Journal of Immunology | 2000

Bioactive Proteinase 3 on the Cell Surface of Human Neutrophils: Quantification, Catalytic Activity, and Susceptibility to Inhibition

Edward J. Campbell; Melody A. Campbell; Caroline A. Owen

Although proteinase 3 (PR3) is known to have the potential to promote inflammation and injure tissues, the biologic forms and function of PR3 in polymorphonuclear neutrophils (PMN) from healthy donors have received little attention. In this paper, we show that PMN contain 3.24 ± SD 0.24 pg of PR3 per cell, and that the mean concentration of PR3 in azurophil granules of PMN is 13.4 mM. Low levels of PR3 are detectable on the cell surface of unstimulated PMN. Exposure of PMN to cytokines or chemoattractants alone induces modest (1.5- to 2.5-fold) increases in cell surface-bound PR3. In contrast, brief priming of PMN with cytokines, followed by activation with a chemoattractant, induces rapid and persistent, 5- to 6-fold increases in cell surface expression of PR3, while causing minimal free release of PR3. Membrane-bound PR3 on PMN is catalytically active against Boc-Alanine-Alanine-Norvaline-thiobenzyl ester and fibronectin, but in marked contrast to soluble PR3, membrane-bound PR3 is resistant to inhibition by physiologic proteinase inhibitors. PR3 appears to bind to the cell surface of PMN via a charge-dependent mechanism because exposure of fixed, activated PMN to solutions having increasing ionic strength results in elution of PR3, HLE, and CG, and there is a direct relationship between their order of elution and their isoelectric points. These data indicate that rapidly inducible PR3 expressed on the cell surface of PMN is an important bioactive form of the proteinase. If PR3 expression on the cell surface of PMN is dysregulated, it is well equipped to amplify tissue injury directly, and also indirectly via the generation of autoantibodies.


Journal of Clinical Investigation | 2014

Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD

Kenji Mizumura; Suzanne M. Cloonan; Kiichi Nakahira; Abhiram R. Bhashyam; Morgan Cervo; Tohru Kitada; Kimberly Glass; Caroline A. Owen; Ashfaq Mahmood; George R. Washko; Shu Hashimoto; Stefan W. Ryter; Augustine M. K. Choi

The pathogenesis of chronic obstructive pulmonary disease (COPD) remains unclear, but involves loss of alveolar surface area (emphysema) and airway inflammation (bronchitis) as the consequence of cigarette smoke (CS) exposure. Previously, we demonstrated that autophagy proteins promote lung epithelial cell death, airway dysfunction, and emphysema in response to CS; however, the underlying mechanisms have yet to be elucidated. Here, using cultured pulmonary epithelial cells and murine models, we demonstrated that CS causes mitochondrial dysfunction that is associated with a reduction of mitochondrial membrane potential. CS induced mitophagy, the autophagy-dependent elimination of mitochondria, through stabilization of the mitophagy regulator PINK1. CS caused cell death, which was reduced by administration of necrosis or necroptosis inhibitors. Genetic deficiency of PINK1 and the mitochondrial division/mitophagy inhibitor Mdivi-1 protected against CS-induced cell death and mitochondrial dysfunction in vitro and reduced the phosphorylation of MLKL, a substrate for RIP3 in the necroptosis pathway. Moreover, Pink1(-/-) mice were protected against mitochondrial dysfunction, airspace enlargement, and mucociliary clearance (MCC) disruption during CS exposure. Mdivi-1 treatment also ameliorated CS-induced MCC disruption in CS-exposed mice. In human COPD, lung epithelial cells displayed increased expression of PINK1 and RIP3. These findings implicate mitophagy-dependent necroptosis in lung emphysematous changes in response to CS exposure, suggesting that this pathway is a therapeutic target for COPD.


Journal of Clinical Investigation | 2013

Histone deacetylase 6–mediated selective autophagy regulates COPD-associated cilia dysfunction

Hilaire C. Lam; Suzanne M. Cloonan; Abhiram R. Bhashyam; Jeffery A. Haspel; Anju Singh; J. Fah Sathirapongsasuti; Morgan Cervo; Hongwei Yao; Anna L. Chung; Kenji Mizumura; Chang Hyeok An; Bin Shan; Jonathan Franks; Kathleen J. Haley; Caroline A. Owen; Yohannes Tesfaigzi; George R. Washko; John Quackenbush; Edwin K. Silverman; Irfan Rahman; Hong Pyo Kim; Ashfaq Mahmood; Shyam Biswal; Stefan W. Ryter; Augustine M. K. Choi

Chronic obstructive pulmonary disease (COPD) involves aberrant airway inflammatory responses to cigarette smoke (CS) that are associated with epithelial cell dysfunction, cilia shortening, and mucociliary clearance disruption. Exposure to CS reduced cilia length and induced autophagy in vivo and in differentiated mouse tracheal epithelial cells (MTECs). Autophagy-impaired (Becn1+/- or Map1lc3B-/-) mice and MTECs resisted CS-induced cilia shortening. Furthermore, CS increased the autophagic turnover of ciliary proteins, indicating that autophagy may regulate cilia homeostasis. We identified cytosolic deacetylase HDAC6 as a critical regulator of autophagy-mediated cilia shortening during CS exposure. Mice bearing an X chromosome deletion of Hdac6 (Hdac6-/Y) and MTECs from these mice had reduced autophagy and were protected from CS-induced cilia shortening. Autophagy-impaired Becn1-/-, Map1lc3B-/-, and Hdac6-/Y mice or mice injected with an HDAC6 inhibitor were protected from CS-induced mucociliary clearance (MCC) disruption. MCC was preserved in mice given the chemical chaperone 4-phenylbutyric acid, but was disrupted in mice lacking the transcription factor NRF2, suggesting that oxidative stress and altered proteostasis contribute to the disruption of MCC. Analysis of human COPD specimens revealed epigenetic deregulation of HDAC6 by hypomethylation and increased protein expression in the airways. We conclude that an autophagy-dependent pathway regulates cilia length during CS exposure and has potential as a therapeutic target for COPD.


Journal of Clinical Investigation | 1999

Quantum proteolysis by neutrophils: implications for pulmonary emphysema in alpha 1-antitrypsin deficiency.

Edward J. Campbell; Melody A. Campbell; Steve Boukedes; Caroline A. Owen

Traditional enzyme kinetics provide a poor explanation for the increased risk of lung injury in alpha 1-antitrypsin (AAT) deficiency. Millimolar concentrations of leukocyte elastase, when released from single azurophil granules of activated neutrophils, lead to evanescent quantum bursts of proteolytic activity before catalysis is quenched by pericellular inhibitors. Herein, we tested the possibility that quantum proteolytic events are abnormal in AAT deficiency. We incubated neutrophils on opsonized fluoresceinated fibronectin in serum from individuals with various AAT phenotypes, and then measured and modeled quantum proteolytic events. The mean areas of the events in serum from heterozygous individuals (Pi MZ and Pi SZ) were slightly, but significantly, larger than those in serum from normal patients (Pi M). In marked contrast, mean areas of events in serum from AAT-deficient individuals were 10-fold larger than those in serum from normal patients. Diffusion modeling predicted that local elastase concentrations exceed AAT concentrations for less than 20 milliseconds and for more than 80 milliseconds in Pi M and Pi Z individuals, respectively. Thus, quantum proteolytic events are abnormally large and prolonged in AAT deficiency, leading directly to an increased risk of tissue injury in the immediate vicinity of activated neutrophils. These results have potentially important implications for the pathogenesis and prevention of lung disease in AAT deficiency.


Wound Repair and Regeneration | 1999

Leukocyte proteinases in wound healing: roles in physiologic and pathologic processes

Brooke Barrick; Edward J. Campbell; Caroline A. Owen

Leukocytes express a number of proteinases which play critical roles in physiologic processes during wound healing. However, if the activity of these proteinases is uncontrolled, they can contribute to devastating tissue injury that can affect most organ systems. Until recently, little was known about the mechanisms by which leukocytes retain the activity of their proteinases within the extracellular space which contains highly effective proteinase inhibitors. Studies of the cell biology of leukocyte proteinases have begun to identify the mechanisms by which proteinases can circumvent the effects of physiologic proteinase inhibitors. Herein, we will review the cell biology of leukocyte proteinases, and we will discuss the mechanisms by which leukocyte proteinases can contribute to physiologic processes occurring during wound healing, as well as their roles in pathologic processes.

Collaboration


Dive into the Caroline A. Owen's collaboration.

Top Co-Authors

Avatar

Francesca Polverino

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Bartolome R. Celli

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yohannes Tesfaigzi

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel Divo

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Emer Kelly

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Hans Petersen

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Kushagra Gupta

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge