Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yohannes Tesfaigzi is active.

Publication


Featured researches published by Yohannes Tesfaigzi.


The New England Journal of Medicine | 2015

Lung-Function Trajectories Leading to Chronic Obstructive Pulmonary Disease.

Peter Lange; Bartolome R. Celli; Alvar Agusti; Gorm Jensen; Miguel Divo; Rosa Faner; Stefano Guerra; Jacob Louis Marott; Fernando D. Martinez; Pablo Martínez-Camblor; Paula Meek; Caroline A. Owen; Hans Petersen; Victor Pinto-Plata; Peter Schnohr; Akshay Sood; Joan B. Soriano; Yohannes Tesfaigzi; Jørgen Vestbo

BACKGROUND Chronic obstructive pulmonary disease (COPD) is thought to result from an accelerated decline in forced expiratory volume in 1 second (FEV1) over time. Yet it is possible that a normal decline in FEV1 could also lead to COPD in persons whose maximally attained FEV1 is less than population norms. METHODS We stratified participants in three independent cohorts (the Framingham Offspring Cohort, the Copenhagen City Heart Study, and the Lovelace Smokers Cohort) according to lung function (FEV1 ≥80% or <80% of the predicted value) at cohort inception (mean age of patients, approximately 40 years) and the presence or absence of COPD at the last study visit. We then determined the rate of decline in FEV1 over time among the participants according to their FEV1 at cohort inception and COPD status at study end. RESULTS Among 657 persons who had an FEV1 of less than 80% of the predicted value before 40 years of age, 174 (26%) had COPD after 22 years of observation, whereas among 2207 persons who had a baseline FEV1 of at least 80% of the predicted value before 40 years of age, 158 (7%) had COPD after 22 years of observation (P<0.001). Approximately half the 332 persons with COPD at the end of the observation period had had a normal FEV1 before 40 years of age and had a rapid decline in FEV1 thereafter, with a mean (±SD) decline of 53±21 ml per year. The remaining half had had a low FEV1 in early adulthood and a subsequent mean decline in FEV1 of 27±18 ml per year (P<0.001), despite similar smoking exposure. CONCLUSIONS Our study suggests that low FEV1 in early adulthood is important in the genesis of COPD and that accelerated decline in FEV1 is not an obligate feature of COPD. (Funded by an unrestricted grant from GlaxoSmithKline and others.).


The New England Journal of Medicine | 2009

MMP12, lung function, and COPD in high-risk populations.

Gary M. Hunninghake; Michael H. Cho; Yohannes Tesfaigzi; Manuel Soto-Quiros; Lydiana Avila; Jessica Lasky-Su; Chris Stidley; Erik Melén; Cilla Söderhäll; Jenny Hallberg; Inger Kull; Juha Kere; Magnus Svartengren; Göran Pershagen; Magnus Wickman; Christoph Lange; Dawn L. DeMeo; Craig P. Hersh; Barbara J. Klanderman; Benjamin A. Raby; David Sparrow; Steven D. Shapiro; Edwin K. Silverman; Augusto A. Litonjua; Scott T. Weiss; Juan C. Celedón

BACKGROUND Genetic variants influencing lung function in children and adults may ultimately lead to the development of chronic obstructive pulmonary disease (COPD), particularly in high-risk groups. METHODS We tested for an association between single-nucleotide polymorphisms (SNPs) in the gene encoding matrix metalloproteinase 12 (MMP12) and a measure of lung function (prebronchodilator forced expiratory volume in 1 second [FEV(1)]) in more than 8300 subjects in seven cohorts that included children and adults. Within the Normative Aging Study (NAS), a cohort of initially healthy adult men, we tested for an association between SNPs that were associated with FEV(1) and the time to the onset of COPD. We then examined the relationship between MMP12 SNPs and COPD in two cohorts of adults with COPD or at risk for COPD. RESULTS The minor allele (G) of a functional variant in the promoter region of MMP12 (rs2276109 [-82A-->G]) was positively associated with FEV(1) in a combined analysis of children with asthma and adult former and current smokers in all cohorts (P=2x10(-6)). This allele was also associated with a reduced risk of the onset of COPD in the NAS cohort (hazard ratio, 0.65; 95% confidence interval [CI], 0.46 to 0.92; P=0.02) and with a reduced risk of COPD in a cohort of smokers (odds ratio, 0.63; 95% CI, 0.45 to 0.88; P=0.005) and among participants in a family-based study of early-onset COPD (P=0.006). CONCLUSIONS The minor allele of a SNP in MMP12 (rs2276109) is associated with a positive effect on lung function in children with asthma and in adults who smoke. This allele is also associated with a reduced risk of COPD in adult smokers.


Journal of Clinical Investigation | 2013

Histone deacetylase 6–mediated selective autophagy regulates COPD-associated cilia dysfunction

Hilaire C. Lam; Suzanne M. Cloonan; Abhiram R. Bhashyam; Jeffery A. Haspel; Anju Singh; J. Fah Sathirapongsasuti; Morgan Cervo; Hongwei Yao; Anna L. Chung; Kenji Mizumura; Chang Hyeok An; Bin Shan; Jonathan Franks; Kathleen J. Haley; Caroline A. Owen; Yohannes Tesfaigzi; George R. Washko; John Quackenbush; Edwin K. Silverman; Irfan Rahman; Hong Pyo Kim; Ashfaq Mahmood; Shyam Biswal; Stefan W. Ryter; Augustine M. K. Choi

Chronic obstructive pulmonary disease (COPD) involves aberrant airway inflammatory responses to cigarette smoke (CS) that are associated with epithelial cell dysfunction, cilia shortening, and mucociliary clearance disruption. Exposure to CS reduced cilia length and induced autophagy in vivo and in differentiated mouse tracheal epithelial cells (MTECs). Autophagy-impaired (Becn1+/- or Map1lc3B-/-) mice and MTECs resisted CS-induced cilia shortening. Furthermore, CS increased the autophagic turnover of ciliary proteins, indicating that autophagy may regulate cilia homeostasis. We identified cytosolic deacetylase HDAC6 as a critical regulator of autophagy-mediated cilia shortening during CS exposure. Mice bearing an X chromosome deletion of Hdac6 (Hdac6-/Y) and MTECs from these mice had reduced autophagy and were protected from CS-induced cilia shortening. Autophagy-impaired Becn1-/-, Map1lc3B-/-, and Hdac6-/Y mice or mice injected with an HDAC6 inhibitor were protected from CS-induced mucociliary clearance (MCC) disruption. MCC was preserved in mice given the chemical chaperone 4-phenylbutyric acid, but was disrupted in mice lacking the transcription factor NRF2, suggesting that oxidative stress and altered proteostasis contribute to the disruption of MCC. Analysis of human COPD specimens revealed epigenetic deregulation of HDAC6 by hypomethylation and increased protein expression in the airways. We conclude that an autophagy-dependent pathway regulates cilia length during CS exposure and has potential as a therapeutic target for COPD.


Journal of Immunology | 2008

Nicotine Primarily Suppresses Lung Th2 but Not Goblet Cell and Muscle Cell Responses to Allergens

Neerad C. Mishra; Raymond J. Langley; Shashi P. Singh; Juan Carlos Peña-Philippides; Takeshi Koga; Seddigheh Razani-Boroujerdi; Julie A. Hutt; Matthew J. Campen; K. Chul Kim; Yohannes Tesfaigzi; Mohan L. Sopori

Allergic asthma, an inflammatory disease characterized by the infiltration and activation of various leukocytes, the production of Th2 cytokines and leukotrienes, and atopy, also affects the function of other cell types, causing goblet cell hyperplasia/hypertrophy, increased mucus production/secretion, and airway hyperreactivity. Eosinophilic inflammation is a characteristic feature of human asthma, and recent evidence suggests that eosinophils also play a critical role in T cell trafficking in animal models of asthma. Nicotine is an anti-inflammatory, but the association between smoking and asthma is highly contentious and some report that smoking cessation increases the risk of asthma in ex-smokers. To ascertain the effects of nicotine on allergy/asthma, Brown Norway rats were treated with nicotine and sensitized and challenged with allergens. The results unequivocally show that, even after multiple allergen sensitizations, nicotine dramatically suppresses inflammatory/allergic parameters in the lung including the following: eosinophilic/lymphocytic emigration; mRNA and/or protein expression of the Th2 cytokines/chemokines IL-4, IL-5, IL-13, IL-25, and eotaxin; leukotriene C4; and total as well as allergen-specific IgE. Although nicotine did not significantly affect hexosaminidase release, IgG, or methacholine-induced airway resistance, it significantly decreased mucus content in bronchoalveolar lavage; interestingly, however, despite the strong suppression of IL-4/IL-13, nicotine significantly increased the intraepithelial-stored mucosubstances and Muc5ac mRNA expression. These results suggest that nicotine modulates allergy/asthma primarily by suppressing eosinophil trafficking and suppressing Th2 cytokine/chemokine responses without reducing goblet cell metaplasia or mucous production and may explain the lower risk of allergic diseases in smokers. To our knowledge this is the first direct evidence that nicotine modulates allergic responses.


Cancer Research | 2011

Combination Therapy with Vidaza and Entinostat Suppresses Tumor Growth and Reprograms the Epigenome in an Orthotopic Lung Cancer Model

Steven A. Belinsky; Marcie J. Grimes; Maria A. Picchi; Hugh Mitchell; Chris Stidley; Yohannes Tesfaigzi; Meghan M. Channell; Yanbin Liu; Robert A. Casero; Stephen B. Baylin; Mathew D. Reed; Carmen S. Tellez; Thomas H. March

Epigenetic therapy for solid tumors could benefit from an in vivo model that defines tumor characteristics of responsiveness and resistance to facilitate patient selection. Here we report that combining the histone deacetylase inhibitor entinostat with the demethylating agent vidaza profoundly affected growth of K-ras/p53 mutant lung adenocarcinomas engrafted orthotopically in immunocompromised nude rats by targeting and ablating pleomorphic cells that occupied up to 75% of the tumor masses. A similar reduction in tumor burden was seen with epigenetic therapy in K-ras or EGFR mutant tumors growing orthotopically. Increased expression of proapoptotic genes and the cyclin-dependent kinase inhibitor p21 was seen. Hundreds of genes were demethylated highlighted by the reexpression of polycomb-regulated genes coding for transcription factor binding proteins and the p16 gene, a key regulator of the cell cycle. Highly significant gene expression changes were seen in key regulatory pathways involved in cell cycle, DNA damage, apoptosis, and tissue remodeling. These findings show the promise for epigenetic therapy in cancer management and provide an orthotopic lung cancer model that can assess therapeutic efficacy and reprogramming of the epigenome in tumors harboring different genetic and epigenetic profiles to guide use of these drugs.


Journal of Immunology | 2002

IFN-γ, But Not Fas, Mediates Reduction of Allergen-Induced Mucous Cell Metaplasia by Inducing Apoptosis

Zha O-Quan Shi; Mark J. Fischer; George T. De Sanctis; Mark Schuyler; Yohannes Tesfaigzi

Inflammatory responses induced by allergen exposure cause mucous cell metaplasia (MCM) by differentiation of existing and proliferating epithelial cells into mucus-storing cells. Airway epithelia have various mechanisms that resolve these changes to form normal airway epithelia. In this report, we first investigated the state of mucous cell metaplasia and the mechanisms by which MCM is reduced despite continued exposures to allergen. After 5 days of allergen exposure, extensive MCM had developed but was reduced when allergen challenge was continued for 15 days. During this exposure period, IL-13 levels decreased and IFN-γ levels increased in the bronchoalveolar lavage fluid. In contrast, IL-13 levels decreased but IFN-γ was not detected at any time point during the resolution of MCM following cessation of allergen exposure. Instillation of IFN-γ but not anti-Fas caused accelerated resolution of MCM and MCM was not resolved in Stat1-deficient mice exposed to allergen for 15 days, confirming that IFN-γ is crucial for reducing MCM during prolonged exposures to allergen. IFN-γ but not anti-Fas induced apoptotic cell death in proliferating normal human bronchial epithelial cells and in human bronchial epithelial cells from subjects with asthma. The apoptotic effect of IFN-γ was caspase dependent and was inhibited by IL-13, indicating that the Th2 milieu in asthmatics may maintain MCM by preventing cell death in metaplastic mucous cells. These studies could be useful in the understanding of deficiencies leading to chronicity in airway changes and designing novel therapies to reverse MCM and airway obstruction in asthmatics.


Nature Genetics | 2017

Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis

Brian D. Hobbs; Kim de Jong; Maxime Lamontagne; Yohan Bossé; Nick Shrine; María Soler Artigas; Louise V. Wain; Ian P. Hall; Victoria E. Jackson; Annah B. Wyss; Stephanie J. London; Kari E. North; Nora Franceschini; David P. Strachan; Terri H. Beaty; John E. Hokanson; James D. Crapo; Peter J. Castaldi; Robert Chase; Traci M. Bartz; Susan R. Heckbert; Bruce M. Psaty; Sina A. Gharib; Pieter Zanen; Jan Willem J. Lammers; Matthijs Oudkerk; Harry J.M. Groen; Nicholas Locantore; Ruth Tal-Singer; Stephen I. Rennard

Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality worldwide. We performed a genetic association study in 15,256 cases and 47,936 controls, with replication of select top results (P < 5 × 10−6) in 9,498 cases and 9,748 controls. In the combined meta-analysis, we identified 22 loci associated at genome-wide significance, including 13 new associations with COPD. Nine of these 13 loci have been associated with lung function in general population samples, while 4 (EEFSEC, DSP, MTCL1, and SFTPD) are new. We noted two loci shared with pulmonary fibrosis (FAM13A and DSP) but that had opposite risk alleles for COPD. None of our loci overlapped with genome-wide associations for asthma, although one locus has been implicated in joint susceptibility to asthma and obesity. We also identified genetic correlation between COPD and asthma. Our findings highlight new loci associated with COPD, demonstrate the importance of specific loci associated with lung function to COPD, and identify potential regions of genetic overlap between COPD and other respiratory diseases.


American Journal of Respiratory Cell and Molecular Biology | 2014

Molecular Processes that Drive Cigarette Smoke–Induced Epithelial Cell Fate of the Lung

Toru Nyunoya; Yohannes A. Mebratu; Amelia U. Contreras; Monica Delgado; Hitendra S. Chand; Yohannes Tesfaigzi

Cigarette smoke contains numerous chemical compounds, including abundant reactive oxygen/nitrogen species and aldehydes, and many other carcinogens. Long-term cigarette smoking significantly increases the risk of various lung diseases, including chronic obstructive pulmonary disease and lung cancer, and contributes to premature death. Many in vitro and in vivo studies have elucidated mechanisms involved in cigarette smoke-induced inflammation, DNA damage, and autophagy, and the subsequent cell fates, including cell death, cellular senescence, and transformation. In this Translational Review, we summarize the known pathways underlying these processes in airway epithelial cells to help reveal future challenges and describe possible directions of research that could lead to better management and treatment of these diseases.


Toxicological Sciences | 2010

Effects of 10 Cigarette Smoke Condensates on Primary Human Airway Epithelial Cells by Comparative Gene and Cytokine Expression Studies

Gavin Pickett; JeanClare Seagrave; Susan Boggs; Gregory M. Polzin; Patricia Richter; Yohannes Tesfaigzi

Cigarettes vary in tobacco blend, filter ventilation, additives, and other physical and chemical properties, but little is known regarding potential differences in toxicity to a smokers airway epithelia. We compared changes in gene expression and cytokine production in primary normal human bronchial epithelial cells following treatment for 18 h with cigarette smoke condensates (CSCs) prepared from five commercial and four research cigarettes, at doses of approximately 4 microg/ml nicotine. Nine of the CSCs were produced under a standard International Organization for Standardization smoking machine regimen and one was produced by a more intense smoking machine regimen. Isolated messenger RNA (mRNA) was analyzed by microarray hybridization, and media was analyzed for secreted cytokines and chemokines. Twenty-one genes were differentially expressed by at least 9 of the 10 CSCs by more than twofold, including genes encoding detoxifying and antioxidant proteins. Cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) and NAD(P)H dehydrogenase, quinone 1 (NQO-1) were selected for validation with quantitative real-time PCR (qRT-PCR) and Western blot analyses. NQO-1 expression determined with microarrays, qRT-PCR, and Western blotting differed among the CSC types, with good correlation among the different assays. CYP1A1 mRNA levels varied substantially, but there was little correlation with the protein levels. For each CSC, the three most induced and three most repressed genes were identified. These genes may be useful as markers of exposure to that particular cigarette type. Furthermore, differences in interleukin-8 secretion were observed. These studies lay the foundation for future investigations to analyze differences in the responses of in vivo systems to tobacco products marketed with claims of reduced exposure or reduced harm.


Journal of Cell Biology | 2008

The BH3-only protein Bik/Blk/Nbk inhibits nuclear translocation of activated ERK1/2 to mediate IFNγ-induced cell death

Yohannes A. Mebratu; Burton F. Dickey; Christopher M. Evans; Yohannes Tesfaigzi

IFNγ induces cell death in epithelial cells, but the mediator for this death pathway has not been identified. In this study, we find that expression of Bik/Blk/Nbk is increased in human airway epithelial cells (AECs [HAECs]) in response to IFNγ. Expression of Bik but not mutant BikL61G induces and loss of Bik suppresses IFNγ-induced cell death in HAECs. IFNγ treatment and Bik expression increase cathepsin B and D messenger RNA levels and reduce levels of phospho–extracellular regulated kinase 1/2 (ERK1/2) in the nuclei of bik+/+ compared with bik−/− murine AECs. Bik but not BikL61G interacts with and suppresses nuclear translocation of phospho-ERK1/2, and suppression of ERK1/2 activation inhibits IFNγ- and Bik-induced cell death. Furthermore, after prolonged exposure to allergen, hyperplastic epithelial cells persist longer, and nuclear phospho-ERK is more prevalent in airways of IFNγ−/− or bik−/− compared with wild-type mice. These results demonstrate that IFNγ requires Bik to suppress nuclear localization of phospho-ERK1/2 to channel cell death in AECs.

Collaboration


Dive into the Yohannes Tesfaigzi's collaboration.

Top Co-Authors

Avatar

Hans Petersen

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Akshay Sood

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Bartolome R. Celli

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Steven A. Belinsky

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Paula Meek

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Yohannes A. Mebratu

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Hitendra S. Chand

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Caroline A. Owen

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Shannon Bruse

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Maria A. Picchi

Lovelace Respiratory Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge