Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caroline B. Quines is active.

Publication


Featured researches published by Caroline B. Quines.


Life Sciences | 2014

Monosodium glutamate, a food additive, induces depressive-like and anxiogenic-like behaviors in young Rats

Caroline B. Quines; Suzan Gonçalves Rosa; Juliana Trevisan da Rocha; Bibiana M. Gai; Cristiani F. Bortolatto; Marta Maria Medeiros Frescura Duarte; Cristina W. Nogueira

UNLABELLED Monosodium glutamate (MSG) has been the target of research due to its toxicological effects. AIMS We investigated the depressive- and anxiogenic-like behaviors in rats exposed to neonatal subcutaneous injection of MSG. The involvement of the serotonergic system, by measuring [(3)H] serotonin (5-HT) uptake in cerebral cortices, and the hypothalamic pituitary adrenal (HPA) axis, by determining serum adrenocorticotropic hormone (ACTH) and corticosterone levels, was also examined. MATERIALS AND METHODS Male and female newborn Wistar rats were divided into control and MSG groups, which received, respectively, a daily subcutaneous injection of saline (0.9%) or MSG (4 g/kg/day) from the 1st to 5th postnatal day. The behavioral tests [spontaneous locomotor activity, contextual fear conditioning, and forced swimming test (FST)] were performed from the 60th to 64th postnatal day. MSG-treated animals showed alteration in the spontaneous locomotor activity, an increase in the number of fecal pellets and the number of animals vocalizations and urine occurrence, and a decrease in the grooming time. KEY FINDINGS The MSG exposure increased the immobility time in the FST and the freezing reaction in the contextual fear conditioning. Additionally, MSG treatment increased the [(3)H]5-HT uptake in the cerebral cortices of rats and induced a deregulation of HPA axis function (by increasing serum ACTH and corticosterone levels). SIGNIFICANCE In conclusion MSG-treated rats are more susceptible to develop anxiogenic- and depressive-like behaviors, which could be related to a dysfunction in the serotonergic system.


Physiology & Behavior | 2016

Diphenyl diselenide ameliorates monosodium glutamate induced anxiety-like behavior in rats by modulating hippocampal BDNF-Akt pathway and uptake of GABA and serotonin neurotransmitters

Suzan Gonçalves Rosa; Caroline B. Quines; Eluza Curte Stangherlin; Cristina W. Nogueira

UNLABELLED Monosodium glutamate (MSG), a flavor enhancer used in food, administered to neonatal rats causes neuronal lesions and leads to anxiety when adulthood. AIMS We investigated the anxiolytic-like effect of diphenyl diselenide (PhSe)2 and its mechanisms on anxiety induced by MSG. MAIN METHODS Neonatal male and female Wistar rats received a subcutaneous injection of saline (0.9%) or MSG (4 g/kg/day) from the 1st to 10th postnatal day. At 60 days of life, the rats received (PhSe)2 (1mg/kg/day) or vehicle by the intragastric route for 7 days. The spontaneous locomotor activity (LAM), elevated plus maze test (EPM) and contextual fear conditioning test (CFC) as well as neurochemical ([(3)H]GABA and [(3)H]5-HT uptake) and molecular analyses (Akt and p-Akt and BDNF levels) were carried out after treatment with (PhSe)2. KEY FINDINGS Neonatal exposure to MSG increased all anxiogenic parameters in LAM, EPM and CFC tests. MSG increased GABA and 5-HT uptake in hippocampus of rats, without changing uptake in cerebral cortex. The levels of BDNF and p-Akt were reduced in hippocampus of rats treated with MSG. The administration of (PhSe)2 to rats reversed all behavioral anxiogenic parameters altered by MSG. The increase in hippocampal GABA and 5-HT uptake induced by MSG was reversed by (PhSe)2. (PhSe)2 reversed the reduction in hippocampal BDNF and p-Akt levels induced by MSG. SIGNIFICANCE In conclusion, the anxiolytic-like action of (PhSe)2 in rats exposed to MSG during their neonatal period is related to its modulation of hippocampal GABA and 5-HT uptake as well as the BDNF-Akt pathway.


Behavioural Brain Research | 2016

Diphenyl diselenide elicits antidepressant-like activity in rats exposed to monosodium glutamate: A contribution of serotonin uptake and Na(+), K(+)-ATPase activity.

Caroline B. Quines; Suzan Gonçalves Rosa; Daniela Velasquez; Juliana Trevisan da Rocha; José S.S. Neto; Cristina W. Nogueira

Depression is a disorder with symptoms manifested at the psychological, behavioral and physiological levels. Monosodium glutamate (MSG) is the most widely used additive in the food industry; however, some adverse effects induced by this additive have been demonstrated in experimental animals and humans, including functional and behavioral alterations. The aim of this study was to investigate the possible antidepressant-like effect of diphenyl diselenide (PhSe)2, an organoselenium compound with pharmacological properties already documented, in the depressive-like behavior induced by MSG in rats. Male and female newborn Wistar rats were divided in control and MSG groups, which received, respectively, a daily subcutaneous injection of saline (0.9%) or MSG (4g/kg/day) from the 1st to 5th postnatal day. At 60th day of life, animals received (PhSe)2 (10mg/kg, intragastrically) 25min before spontaneous locomotor and forced swimming tests (FST). The cerebral cortices of rats were removed to determine [(3)H] serotonin (5-HT) uptake and Na(+), K(+)-ATPase activity. A single administration of (PhSe)2 was effective against locomotor hyperactivity caused by MSG in rats. (PhSe)2 treatment protected against the increase in the immobility time and a decrease in the latency for the first episode of immobility in the FST induced by MSG. Furthermore, (PhSe)2 reduced the [(3)H] 5-HT uptake and restored Na(+), K(+)-ATPase activity altered by MSG. In the present study a single administration of (PhSe)2 elicited an antidepressant-like effect and decrease the synaptosomal [(3)H] 5-HT uptake and an increase in the Na(+), K(+)-ATPase activity in MSG-treated rats.


European Journal of Pharmacology | 2015

Antinociceptive action of diphenyl diselenide in the nociception induced by neonatal administration of monosodium glutamate in rats

Suzan Gonçalves Rosa; Caroline B. Quines; Juliana Trevisan da Rocha; Cristiani F. Bortolatto; Thiago Duarte; Cristina W. Nogueira

Monosodium glutamate (MSG) is a neuroexcitatory amino acid commonly used as flavoring of foods. MSG neonatal administration to animals leads to behavioral and physiological disorders in adulthood, including increased pain sensitivity. This study aimed to investigate the effect of diphenyl diselenide (PhSe)2, an organoselenium compound with pharmacological properties already documented, on nociception induced by MSG. Newborn Wistar rats received 10 subcutaneous injections of MSG at a dose of 4.0g/kg or saline (once daily). At the 60th day of life, the rats were daily treated with (PhSe)2 (1mg/kg) or vehicle (canola oil) by the intragastric route for 7 days. The behavioral tests (locomotor activity, hot plate, tail-immersion and mechanical allodynia) were carried out. Ex vivo assays were performed in samples of hippocampus to determine Na(+), K(+)-ATPase and Ca(2+)-ATPase activities, cytokine levels and [(3)H]glutamate uptake. The results demonstrated that MSG increased nociception in the hot plate test and in the mechanical allodynia stimulated by Von-Frey hair but did not alter the tail immersion test. (PhSe)2 reversed all nociceptive behaviors altered by MSG. MSG caused an increase in Na(+),K(+)-ATPase and Ca(2+)-ATPase activities and in pro-inflammatory cytokine levels and a decrease in the anti-inflammatory cytokine and in the [(3)H]glutamate uptake. (PhSe)2 was effective in reversing all alterations caused by MSG. The results indicate that (PhSe)2 had a potential antinociceptive and anti-inflammatory action in the MSG model.


Behavioural Brain Research | 2015

Involvement of the serotonergic system in the anxiolytic-like effect of 2-phenylethynyl butyltellurium in mice

Caroline B. Quines; Juliana Trevisan da Rocha; Tuane Bazanella Sampaio; Ana Paula Pesarico; José S.S. Neto; Gilson Zeni; Cristina W. Nogueira

Anxiety is a serious disorder with symptoms manifested at the psychological, behavioral, and physiological levels, accompanied by alterations in the serotonergic system and monoaminergic signaling. In this study, the anxiolytic-like effect of 2-phenylethynyl butyltellurium (PEBT), in three well-consolidated anxiety mouse models (light-dark test, novelty suppressed-feeding, elevated plus-maze), was investigated. The involvement of the serotonergic system, synaptosomal [(3)H] serotonin (5-HT) uptake and monoamine oxidase (MAO A and B) activities on cerebral cortices of mice, was examined. Mice received PEBT (1mg/kg, by intragastric route, i.g.) or canola oil (10 ml/kg, i.g.) 30 min before behavioral tests. The results showed that PEBT was effective in increasing the time spent by mice in the illuminated side on the light-dark box and in the open arms on the elevated plus-maze. PEBT decreased the latency to begin eating on the novelty suppressed-feeding test, indicating an anxiolytic-like effect of PEBT. Furthermore, PEBT reduced [(3)H] 5-HT uptake and selectively inhibited MAO-A activity in cerebral cortex, suggesting the involvement of the serotonergic system in the mechanism of action of this tellurium compound.


Journal of Cellular Biochemistry | 2017

Combined Therapy With Swimming Exercise and a Diet Supplemented With Diphenyl Diselenide Is Effective Against Age-Related Changes in the Hepatic Metabolism of Rats

Suélen O. Heck; Bruna da Cruz Weber Fulco; Caroline B. Quines; Carla Elena Sartori Oliveira; Marlon R. Leite; José L. Cechella; Cristina W. Nogueira

Aging is characterized by a widespread loss of homeostasis in biological systems and is accompanied by pathophysiological changes including the liver injury. The aim of the present study was to investigate the effects of the combined therapy with swimming exercise (20 min session, 5 days/week during 4 weeks) and a diet supplemented with 1 ppm of (PhSe)2 on the hepatic metabolic alterations caused by aging in rats. In this study, male old Wistar rats had an increase in the epididymal fat relative weight, disturbances in the activities of hepatic enzymes associated to the glucose homeostasis, higher hepatic triglyceride content and higher activity of the plasma alanine aminotransferase (ALT), and aspartate aminotransferase (AST). The combined therapy normalized the activities of glucose‐6‐Pase and tyrosine aminotransferase, gluconeogenic enzymes, increased the hepatic glycogen content and was effective against the increase in the hepatic triglycerides content, without altering the activities of hexoquinase, and citrate synthase. Moreover, the combined therapy normalized the activities of AST and ALT, indicating a hepatoprotective effect. The combined therapy with swimming exercise and a diet supplemented with 1 ppm of (PhSe)2 contributed to the hepatic glucose homeostasis in old rats. Nevertheless, more studies are needed to investigate the possible mechanisms of action behind these effects. J. Cell. Biochem. 118: 1574–1582, 2017.


Experimental Physiology | 2017

Resistance exercise reduces memory impairment induced by monosodium glutamate in male and female rats

Paulo Cesar Oliveira Araujo; Caroline B. Quines; Natália Silva Jardim; Marlon R. Leite; Cristina W. Nogueira

What is the central question of this study? Monosodium glutamate causes cognitive impairment. Does resistance exercise improve the performance of rats treated with monosodium glutamate? What is the main finding and its importance? Resistance exercise is effective against monosodium glutamate‐induced memory impairment in male and female rats.


Biological Trace Element Research | 2013

Phenylethynyl-Butyltellurium Inhibits the Sulfhydryl Enzyme Na + , K + -ATPase: An Effect Dependent on the Tellurium Atom

Caroline B. Quines; Suzan Gonçalves Rosa; José S.S. Neto; Gilson Zeni; Cristina W. Nogueira

Organotellurium compounds are known for their toxicological effects. These effects may be associated with the chemical structure of these compounds and the oxidation state of the tellurium atom. In this context, 2-phenylethynyl-butyltellurium (PEBT) inhibits the activity of the sulfhydryl enzyme, δ-aminolevulinate dehydratase. The present study investigated on the importance of the tellurium atom in the PEBT ability to oxidize mono- and dithiols of low molecular weight and sulfhydryl enzymes in vitro. PEBT, at high micromolar concentrations, oxidized dithiothreitol (DTT) and inhibited cerebral Na+, K+-ATPase activity, but did not alter the lactate dehydrogenase activity. The inhibition of cerebral Na+, K+-ATPase activity was completely restored by DTT. By contrast, 2-phenylethynyl-butyl, a molecule without the tellurium atom, neither oxidized DTT nor altered the Na+, K+-ATPase activity. In conclusion, the tellurium atom of PEBT is crucial for the catalytic oxidation of sulfhydryl groups from thiols of low molecular weight and from Na+, K+-ATPase.


Food and Chemical Toxicology | 2018

(p-ClPhSe)2 stabilizes metabolic function in a rat model of neuroendocrine obesity induced by monosodium glutamate

Caroline B. Quines; Suzan Gonçalves Rosa; Daniela Velasquez; Vinicius Costa Prado; José S.S. Neto; Cristina W. Nogueira

Obesity is a chronic and complex medical condition characterized by excessive fat accumulation and its complications include metabolic syndrome, diabetes and chronic inflammation. The aim of this study was to expand the knowledge about p-chloro-diphenyl diselenide (p-ClPhSe)2 effects on enzymes and proteins involved in the metabolism of lipids and carbohydrates in a model of neuroendocrine obesity induced by MSG. Male Wistar rats were treated during the first ten postnatal days with MSG (4 g/kg, s.c.) and received (p-ClPhSe)2 (10 mg/kg, i.g.) from 90th to 97th postnatal day. The hypothalamic function, insulin resistance and other biochemical parameters were determined in the rat blood, liver and skeletal muscle. The MSG administration induced hypothalamic neurotoxicity accompanied by metabolic disorders, including obesity, a transient insulin resistance, and metabolic alterations, demonstrated in the blood, liver and skeletal muscle, and lipotoxicity, characterized in the liver and skeletal muscle. The metabolic disorders in the liver and skeletal muscle were accompanied by the decrease in AMPK phosphorylation and activation of Akt. (p-ClPhSe)2 restored most of metabolic parameters altered by MSG administration in rats. The hypothalamic neurotoxicity induced by MSG was accompanied by metabolic disorders in rats, which were regulated by (p-ClPhSe)2.


Physiology & Behavior | 2017

Selective inhibition of MAO-A activity results in an antidepressant-like action of 2-benzoyl 4-iodoselenophene in mice

Daniela Velasquez; Caroline B. Quines; Renan P. Pistoia; Gilson Zeni; Cristina W. Nogueira

Depression is a leading cause of disability worldwide. For this reason, the aim of this study was to investigate the possible antidepressant-like activity of 2-benzoyl-4-iodoselenophene (C17H11IOSe), a selenophene compound, in two well-consolidated behavioral assays for screening antidepressant activity (forced swimming test and tail suspension test) in mice. In order to investigate the mechanism of action of C17H11IOSe, it was investigated the activities of cerebral enzymes: monoamine oxidase MAO A and B and Na+, K+ ATPase, and if an inhibitor of serotonin synthesis, p-chlorophenylalanine (pCPA) (100mg/kg) blocks the antidepressant-like effect of C17H11IOSe. Swiss mice received (C17H11IOSe) (5-50mg/kg) or canola oil by the intragastric (i.g.) route before behavioral tests. The results showed that C17H11IOSe at dose range of 5-50mg/kg decreased immobility time in the tail suspension test. In the forced swimming test, C17H11IOSe reduced the immobility time at the doses of 10 and 50mg/kg. C17H11IOSe differently affected the cerebral cortical Na+, K+ ATPase; the effects on this enzyme were dependent of the dose tested. At a dose of 10mg/kg, the compound increased Na+, K+ ATPase activity, while the activity was inhibited at a dose of 50mg/kg. pCPA blocked the antidepressant-like action of C17H11IOSe in mice. Therefore, C17H11IOSe (5-50mg/kg) selectively inhibited MAO-A activity in cerebral cortices of mice. The modulation of serotonergic system contributed to the antidepressant-like action of C17H11IOSe in mice.

Collaboration


Dive into the Caroline B. Quines's collaboration.

Top Co-Authors

Avatar

Cristina W. Nogueira

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Suzan Gonçalves Rosa

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Juliana Trevisan da Rocha

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Gilson Zeni

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Daniela Velasquez

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

José S.S. Neto

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Pietro M. Chagas

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruna da Cruz Weber Fulco

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Cristiani F. Bortolatto

Universidade Federal de Santa Maria

View shared research outputs
Researchain Logo
Decentralizing Knowledge